CF487E Tourists 【圆方树 + 树剖 + 堆】
题目链接
题解
圆方树 + 树剖 裸题
建好圆方树维护路径上最小值即可
方点的值为其儿子的最小值,这个用堆维护
为什么只维护儿子?因为这样修改点的时候就只需要修改其父亲的堆
这样充分利用了一对一的特性优化了复杂度
如此询问时如果\(lca\)为方点,再询问一下\(lca\)的父亲即可
复杂度\(O(qlog^2n)\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<vector>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 200005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int hh[maxn],nne = 1,h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxn << 1],e[maxn << 1];
inline void build(int u,int v){
e[++nne] = (EDGE){v,hh[u]}; hh[u] = nne;
e[++nne] = (EDGE){u,hh[v]}; hh[v] = nne;
}
inline void add(int u,int v){
ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
}
struct HEAP{
priority_queue<int,vector<int>,greater<int> > a,b;
void ck(){while (!b.empty() && a.top() == b.top()) a.pop(),b.pop();}
int size(){return a.size() - b.size();}
void ins(int x){a.push(x);}
void del(int x){b.push(x);}
int top(){ck(); return size() ? a.top() : INF;}
}H[maxn];
int n,m,q,N,w[maxn];
int dfn[maxn],low[maxn],st[maxn],Top,cnt;
void dfs(int u,int las){
dfn[u] = low[u] = ++cnt; st[++Top] = u;
for (int k = hh[u],to; k; k = e[k].nxt)
if (k != las){
if (!dfn[to = e[k].to]){
dfs(to,k ^ 1);
low[u] = min(low[u],low[to]);
if (low[to] >= dfn[u]){
add(++N,u);
do{add(N,st[Top]);} while (st[Top--] != to);
}
}
else low[u] = min(low[u],dfn[to]);
}
}
int siz[maxn],top[maxn],dep[maxn],fa[maxn],son[maxn],id[maxn],Hash[maxn],Cnt;
void dfs1(int u){
siz[u] = 1;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dep[to] = dep[u] + 1;
dfs1(to);
if (u > n) H[u - n].ins(w[to]);
siz[u] += siz[to];
if (!son[u] || siz[to] > siz[son[u]]) son[u] = to;
}
if (u > n) w[u] = H[u - n].top();
}
void dfs2(int u,int flag){
top[u] = flag ? top[fa[u]] : u;
id[u] = ++Cnt; Hash[Cnt] = u;
if (son[u]) dfs2(son[u],1);
Redge(u) if ((to = ed[k].to) != fa[u] && to != son[u])
dfs2(to,0);
}
int mn[maxn << 2];
inline void upd(int u){mn[u] = min(mn[ls],mn[rs]);}
void build(int u,int l,int r){
if (l == r){
mn[u] = w[Hash[l]];
return;
}
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
upd(u);
}
void modify(int u,int l,int r,int pos,int v){
if (l == r){mn[u] = v; return;}
int mid = l + r >> 1;
if (mid >= pos) modify(ls,l,mid,pos,v);
else modify(rs,mid + 1,r,pos,v);
upd(u);
}
int query(int u,int l,int r,int L,int R){
if (l >= L && r <= R) return mn[u];
int mid = l + r >> 1;
if (mid >= R) return query(ls,l,mid,L,R);
if (mid < L) return query(rs,mid + 1,r,L,R);
return min(query(ls,l,mid,L,R),query(rs,mid + 1,r,L,R));
}
int solve1(int u,int v){
int ans = INF;
while (top[u] != top[v]){
if (dep[top[u]] < dep[top[v]]) swap(u,v);
ans = min(ans,query(1,1,N,id[top[u]],id[u]));
u = fa[top[u]];
}
if (dep[u] > dep[v]) swap(u,v);
ans = min(ans,query(1,1,N,id[u],id[v]));
if (u > n && fa[u]) ans = min(ans,w[fa[u]]);
return ans;
}
void solve2(int u,int v){
modify(1,1,N,id[u],v);
if (fa[u]){
H[fa[u] - n].del(w[u]),H[fa[u] - n].ins(v);
w[fa[u]] = H[fa[u] - n].top();
modify(1,1,N,id[fa[u]],w[fa[u]]);
}
w[u] = v;
}
int main(){
N = n = read(); m = read(); q = read();
for (int i = 1; i <= n; i++) w[i] = read();
for (int i = 1; i <= m; i++) build(read(),read());
dfs(1,0);
dfs1(1);
dfs2(1,0);
build(1,1,N);
char opt; int a,b;
while (q--){
opt = getchar(); while (opt != 'A' && opt != 'C') opt = getchar();
a = read(); b = read();
if (opt == 'A') printf("%d\n",solve1(a,b));
else solve2(a,b);
}
return 0;
}
CF487E Tourists 【圆方树 + 树剖 + 堆】的更多相关文章
- CF487E Tourists(圆方树+树链剖分+multiset/可删堆)
CF487E Tourists(圆方树+树链剖分+multiset/可删堆) Luogu 给出一个带点权的无向图,两种操作: 1.修改某点点权. 2.询问x到y之间简单路径能走过的点的最小点权. 题解 ...
- CF487E Tourists[圆方树+树剖(线段树套set)]
做这题的时候有点怂..基本已经想到正解了..结果感觉做法有点假,还是看了正解题解.. 首先提到简单路径上经过的点,就想到了一个关于点双的结论:两点间简单路径上所有可能经过的点的并等于路径上所有点所在点 ...
- CF487E Tourists + 圆方树学习笔记(圆方树+树剖+线段树+multiset)
QWQ果然我已经什么都学不会的人了. 这个题目要求的是图上所有路径的点权和!QWQ(我只会树上啊!) 这个如果是好啊 这时候就需要 圆方树! 首先在介绍圆方树之前,我们先来一点简单的前置知识 首先,我 ...
- CF487E Tourists 圆方树、树链剖分
传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...
- uoj30【CF Round #278】Tourists(圆方树+树链剖分+可删除堆)
- 学习了一波圆方树 学习了一波点分治 学习了一波可删除堆(巧用 ? STL) 传送门: Icefox_zhx 注意看代码看怎么构建圆方树的. tips:tips:tips:圆方树内存记得开两倍 CO ...
- Tourists——圆方树
CF487E Tourists 一般图,带修求所有简单路径代价. 简单路径,不能经过同一个点两次,那么每个V-DCC出去就不能再回来了. 所以可以圆方树,然后方点维护一下V-DCC内的最小值. 那么, ...
- CF487E Tourists - Tarjan缩点 + 树剖 + multiset
Solution 先Tarjan求出点双联通分量 并缩点. 用$multiset$维护 点双内的最小点权. 容易发现, 点双内的最小点权必须包括与它相连的割边的点权. 所以我们必须想办法来维护. 所以 ...
- CF487E Tourists(圆方树+堆+链剖)
本题解并不提供圆方树讲解. 所以不会圆方树的出门右转问yyb 没有修改的话圆方树+链剖. 方点的权值为点双连通分量里的最小值. 然后修改的话圆点照修,每一个方点维护一个小根堆. 考虑到可能被菊花卡死. ...
- CF487E Tourists【圆方树+tarjan+multiset+树剖+线段树】
圆方树不仅能解决仙人掌问题(虽然我仙人掌问题也没用过圆方树都是瞎搞过去的),还可以解决一般图的问题 一般图问题在于缩完环不是一棵树,所以就缩点双(包括双向边) 每个方点存他所在点双内除根以外的点的最小 ...
随机推荐
- 用原生JS实现的一个导航下拉菜单,下拉菜单的宽度与浏览器视口的宽度一样(js+html+css)
这个导航下拉菜单需要实现的功能是:下拉菜单的宽度与浏览器视口的宽度一样宽:一级导航只有两项,当鼠标移到一级导航上的导航项时,相应的二级导航出现.在本案例中通过改变二级导航的高度来实现二级导航的显示和消 ...
- 《图解 HTTP 》阅读 —— 第二章
第2章 简单的http协议 http 协议用于客户端和服务器端的通信. 请求访问文本或图像等资源的一端称为客户端,提供资源响应的一端称为服务器端. 请求报文: 响应报文: 为了能够处理大量的事务,ht ...
- 75.[LeetCode] Sort Colors
Given an array with n objects colored red, white or blue, sort them in-place so that objects of the ...
- 关于SQL 语句常用的一些查询收藏
create database xuesheng go use xuesheng go /*学生表*/ create table Student ( S# ,) primary key, Sname ...
- c# ms chart 控件使用方法
第一个简单的chart: spline// Create new data series and set it's visualattributes Series series = new ...
- ES6对数组的扩展
ECMAScript6对数组进行了扩展,为数组Array构造函数添加了from().of()等静态方法,也为数组实例添加了find().findIndex()等方法.下面一起来看一下这些方法的用法. ...
- 城联数据TSM技术方案起底
近日,城联数据有限公司与中国电信签订了<基于NFC技术的公交业务的合作协议>.双方基于NFC技术开展互联互通城市公交卡业务合作,实现符合住房和城乡建设部城市公用事业互联互通卡系列标准的移动 ...
- C++ STL 全排列
摘自爱国师哥博客https://www.cnblogs.com/aiguona/p/7304945.html 一.概念 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元 ...
- 20162320MyOD重做版
博客说明 由于上次的MyOD.java没有得分,所以这次我重做了这个java,代码是自己完成的,请教了一些同学的思路.故补交一篇博客来说明我对每一步代码的编写的想法以及理解. 代码片段及理解 1.先创 ...
- 在html中怎么格式化输出json字符串
#今天的项目用到,看俊哥找到,特此记录下来 步骤: 1.在html页面中输入下面的标签,必须是在pre标签内输出格式才会生效: <pre id="songReqJson"&g ...