【bzoj1022】小约翰的游戏John
Solution
这题其实是裸的反Nim,这里主要是为了写反Nim游戏的证明
首先给出反Nim(anti-nim)的定义和结论:
【定义】桌子上有 N 堆石子,游戏者轮流取石子; 每次只能从一堆中取出任意数目的石子,但不能不取;取走最后一个石子者败
【结论】先手必胜当且仅当满足下面两个条件中的一个
(1)所有堆的石子数都为\(1\)且游戏的\(sg\)值为\(0\)
(2)有些堆的石子数大于\(1\)且游戏的\(sg\)值不为\(0\)
然后我们来证明anti-nim游戏的结论,可以分成两种情况讨论(以下内容摘自论文):
1、每堆只有\(1\)个石子:
那么显然先手必胜当且仅当石子堆数\(n\)为偶数
2、其他情况:
(1)当游戏的\(sg\)值不为\(0\)时:若还有至少两堆石子的数目大于$ 1$,则先手将 \(sg\)值变为 \(0\)即可;若只有一堆石子数大于\(1\),则先手总可以将状态变为有奇数个\(1\)(可以把大于\(1\)的那堆直接取完或者取剩\(1\)个),所以,当\(sg\)不为\(0\)时先手必胜
(2)当游戏的\(sg\)值为\(0\)时:至少有两堆石子的数目大于 \(1\),则先手决策完之后,必定至少有一堆的石子数大于 \(1\),且\(sg\)值(当前游戏局面的)不为\(0\),由上段的论证我们可以发现,此时,无论先手如何决策,都只会将游戏带入先手必胜局,所以先手必败
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,T,ans,cnt;
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int x;
scanf("%d",&T);
for (int o=1;o<=T;++o){
ans=0; cnt=0;
scanf("%d",&n);
for (int i=1;i<=n;++i){
scanf("%d",&x),ans^=x;
if (x>1) ++cnt;
}
if (cnt==0) printf(n%2?"Brother\n":"John\n");
else printf(ans?"John\n":"Brother\n");
}
}
【bzoj1022】小约翰的游戏John的更多相关文章
- bzoj千题计划112:bzoj1022: [SHOI2008]小约翰的游戏John
http://www.lydsy.com/JudgeOnline/problem.php?id=1022 http://www.cnblogs.com/TheRoadToTheGold/p/67448 ...
- BZOJ1022 [SHOI2008]小约翰的游戏John 【博弈论】
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3014 Solved: 1914 [Submi ...
- [Bzoj1022][SHOI2008]小约翰的游戏John(博弈论)
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2976 Solved: 1894[Submit] ...
- bzoj1022: [SHOI2008]小约翰的游戏John(博弈SG-nim游戏)
1022: [SHOI2008]小约翰的游戏John 题目:传送门 题目大意: 一道反nim游戏,即给出n堆石子,每次可以取完任意一堆或一堆中的若干个(至少取1),最后一个取的LOSE 题解: 一道 ...
- SHOI2008小约翰的游戏John
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1139 Solved: 701[Submit][ ...
- bzoj 1022: [SHOI2008]小约翰的游戏John anti_nim游戏
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1189 Solved: 734[Submit][ ...
- BZOJ 1022 [SHOI2008]小约翰的游戏John
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1635 Solved: 1036[Submit] ...
- 1022: [SHOI2008]小约翰的游戏John
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1322 Solved: 829[Submit][ ...
- 1022: [SHOI2008]小约翰的游戏John【Nim博弈,新生必做的水题】
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2709 Solved: 1726[Submit] ...
- BZOJ 1022 [SHOI2008]小约翰的游戏John AntiNim游戏
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1475 Solved: 932[Submit][ ...
随机推荐
- Laya 自适应 不拉伸处理
Laya.init(640, Laya.Browser.width / 640 * 1028, WebGL); Laya.stage.scaleMode = "fixedwidth" ...
- python数据可视化——matplotlib 用户手册入门:使用指南
参考matplotlib官方指南: https://matplotlib.org/tutorials/introductory/usage.html#sphx-glr-tutorials-introd ...
- RyuBook1.0案例三:REST Linkage
REST Linkage 该小结主要介绍如何添加一个REST Link 函数 RYU本身提供了一个类似WSGI的web服务器功能.借助这个功能,我们可以创建一个REST API. 基于创建的REST ...
- leetcode27_C++Remove Element
给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成 ...
- 剑指offer-数值的整数方
数值的整数方 一.问题描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 二.算法思路 按照指数Exp的情况进行讨论. Exp> ...
- underscore.js源码解析(四)
没看过前几篇的可以猛戳这里: underscore.js源码解析(一) underscore.js源码解析(二) underscore.js源码解析(三) underscore.js源码GitHub地 ...
- 【探路者】互评beta版本
成员博客 1蔺依铭:http://www.cnblogs.com/linym762/ 2张恩聚:http://www.cnblogs.com/zej87/ 3米赫:http://www.cnblogs ...
- 福大软工1816 - 404 Note Found选题报告
目录 NABCD分析引用 N(Need,需求): A(Approach,做法): B(Benefit,好处): C(Competitors,竞争): D(Delivery,交付): 初期 中期 个人贡 ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- python3.6 SSL module is not available
pip is configured with locations that require TLS/SSL, however the ssl module in Python is not avail ...