Portal -->Spoj DIVCNTK

Solution

  这题的话其实是。。洲阁筛模板题?差不多吧

  题意就是给你一个函数\(S_k(x)\)

\[S_k(n)=\sum\limits_{i=1}^{n} \sigma_0(i^k)
\]

  其中\(\sigma_0(x)\)表示的是\(x\)的约数个数,现在已知\(n\)和\(k\)求\(S_k(n)\) mod \(2^{64}\)

  

  额首先\(\sigma_0(x)\)是个积性函数

  然后我们会发现。。这个东西在素数处的取值还是很好求的

\[\begin{aligned}
&\sigma_0(p)=2\\
&\sigma_0(p^k)=k+1\\
&\sigma_0((p^k)^q)=qk+1\\
\end{aligned}
\]

  那然后用\(g_i\)表示\([1,n]\)的素数个数,\(h_{i,j}\)表示\(\sum\limits_{k=2}^{i}[k的最小质因子>=P_j]\sigma_0(k)\)

  然后用洲阁筛(或者额。。min_25)的那种方法来搞一下就好了,具体的讲解的话传送一波好了qwq

  Portal -->洲阁筛&min_25筛

  具体的一些实现细节都在上面那篇讲解向博文里面了不想再打一遍了qwq

​   

  代码大概长这个样子(然而我写的貌似是min_25。。。)以及这题貌似卡常有点qwq

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define ull unsigned long long
using namespace std;
const int MAXN=1e5+10;
ll g[MAXN*2],loc1[MAXN*2],loc2[MAXN*2],rec[MAXN*2];
int P[MAXN];
bool vis[MAXN];
ll n,m,K,cnt,Up,cntval,sq,T;
ull ans;
void prework(int n);
void init_loc();
int Pos(ll x){return x<=sq?loc1[x]:loc2[n/x];}
void get_g();
ull H(ll i,int j); int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&T);
prework(MAXN);
for (int o=1;o<=T;++o){
scanf("%lld%lld",&n,&K);
sq=sqrt(n)+0.5;
init_loc();
get_g();
ans=H(n,1)+1;
printf("%llu\n",ans);
}
} void prework(int n){
cnt=0;
for (int i=2;i<=n;++i){
if (!vis[i])
P[++cnt]=i;
for (int j=1;j<=cnt&&P[j]*i<=n;++j){
vis[P[j]*i]=true;
if (i%P[j]==0) break;
}
}
} void init_loc(){//离散化
cntval=0;
for (ll i=1,pos;i<=n;i=pos+1){
rec[++cntval]=n/i;
pos=n/(n/i);
}
reverse(rec+1,rec+1+cntval);
for (int i=1;i<=cntval;++i)
if (rec[i]<=sq) loc1[rec[i]]=i;
else loc2[n/rec[i]]=i;
} void get_g(){
for (int i=1;i<=cntval;++i) g[i]=rec[i]-1;
for (int j=1;j<=cnt&&1LL*P[j]*P[j]<=n;++j)//P的取值范围都是<sqrt(n)
for (int i=cntval;i>=1&&rec[i]>=1LL*P[j]*P[j];--i)
g[i]-=g[Pos(rec[i]/P[j])]-g[Pos(P[j]-1)];
} ull H(ll i,int j){
if (i<=1) return 0;
ull ret=0;
ll tmp;
int k;
for (k=j;k<=cnt&&1LL*P[k]*P[k]<=n&&1LL*P[k]*P[k]<=i;++k){
tmp=P[k];
for (int q=1;tmp<=i;tmp*=P[k],++q)
ret+=(H(i/tmp,k+1)+1)*(q*K+1);
}
if (i>=P[k-1])//将i<P^2(也就是全是素数处点值的)部分算进去
ret+=(ull)(K+1)*(g[Pos(i)]-g[Pos(P[k-1])]);
return ret;
}

【spoj】DIVCNTK的更多相关文章

  1. 【SPOJ】DIVCNTK min_25筛

    题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)= ...

  2. 【SPOJ】NUMOFPAL - Number of Palindromes(Manacher,回文树)

    [SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. ...

  3. 【SPOJ】Substrings(后缀自动机)

    [SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...

  4. 【SPOJ】Longest Common Substring II (后缀自动机)

    [SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记 ...

  5. 【SPOJ】Longest Common Substring(后缀自动机)

    [SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...

  6. 【SPOJ】Distinct Substrings(后缀自动机)

    [SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...

  7. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  8. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

  9. 【SPOJ】QTREE7(Link-Cut Tree)

    [SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...

随机推荐

  1. 《算法图解》——第十章 K最近邻算法

    第十章    K最近邻算法 1 K最近邻(k-nearest neighbours,KNN)——水果分类 2 创建推荐系统 利用相似的用户相距较近,但如何确定两位用户的相似程度呢? ①特征抽取 对水果 ...

  2. mybatis 加载配置文件的方法

    一.  使用sqlSessionFactory 的 mapperLocations 进行加载 <!-- SessionFactory --> <bean id="sqlSe ...

  3. CentOS7使用阿里源安装最新版Docker

    卸载已经安装的Docker sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker ...

  4. NO.3:自学python之路------集合、文件操作、函数

    引言 本来计划每周完成一篇Python的自学博客,由于上一篇到这一篇遇到了过年.开学等杂事,导致托更到现在.现在又是一个新的学期,春天也越来越近了(冷到感冒).好了,闲话就说这么多.开始本周的自学Py ...

  5. 7.hdfs工作流程及机制

    1. hdfs基本工作流程 1. hdfs初始化目录结构 hdfs namenode -format 只是初始化了namenode的工作目录 而datanode的工作目录是在datanode启动后自己 ...

  6. LeetCode 289. Game of Life (C++)

    题目: According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a ce ...

  7. Alpha发布—文案+美工展示

    目录 团队简介 项目进展 组内分工 队员总结 后期计划 一.团队简介 二.项目进展 从选题发布到今天的Alpha发布,我们团队经历了许许多多的磨难.我们最终设计了如下的功能:首页.班级.个人.更多.打 ...

  8. js正则表达式匹配斜杠 网址 url等

    项目中有个需求,需要从url中截取ID.需要在前台用js匹配截取,所以就百度一下,发现都没有说清楚,所以这里就总结下. 正则表达式如下: var epId=0; //工厂企业ID var urlInd ...

  9. lintcode-401-排序矩阵中的从小到大第k个数

    401-排序矩阵中的从小到大第k个数 在一个排序矩阵中找从小到大的第 k 个整数. 排序矩阵的定义为:每一行递增,每一列也递增. 样例 给出 k = 4 和一个排序矩阵: [ [1 ,5 ,7], [ ...

  10. 使用Logstash同步数据至Elasticsearch,Spring Boot中集成Elasticsearch实现搜索

    安装logstash.同步数据至ElasticSearch 为什么使用logstash来同步,CSDN上有一篇文章简要的分析了以下几种同步工具的优缺点:https://blog.csdn.net/la ...