集成学习之Boosting —— AdaBoost实现
集成学习之Boosting —— AdaBoost原理
集成学习之Boosting —— AdaBoost实现
AdaBoost的一般算法流程
输入: 训练数据集 \(T = \left \{(x_1,y_1), (x_2,y_2), \cdots (x_N,y_N)\right \}\),\(y\in\left\{-1,+1 \right\}\),基学习器\(G_m(x)\),训练轮数M
- 初始化权值分布: \(w_i^{(1)} = \frac{1}{N}\:, \;\;\;\; i=1,2,3, \cdots N\)
- for m=1 to M:
(a) 使用带有权值分布的训练集学习得到基学习器\(G_m(x)\):\[G_m(x) = \mathop{\arg\min}\limits_{G(x)}\sum\limits_{i=1}^Nw_i^{(m)}\mathbb{I}(y_i \neq G(x_i))
\]\(\qquad\) (b) 计算\(G_m(x)\)在训练集上的误差率:
\[\epsilon_m = \frac{\sum\limits_{i=1}^Nw_i^{(m)}\mathbb{I}(y_i \neq G_m(x_i))}{\sum\limits_{i=1}^Nw_i^{(m)}}
\]\(\qquad\)(c) 计算\(G_m(x)\)的系数: \(\alpha_m = \frac{1}{2}ln\frac{1-\epsilon_m}{\epsilon_m}\)
\(\qquad\)(d) 更新样本权重分布: \(w_{i}^{(m+1)} = \frac{w_i^{(m)}e^{-y_i\alpha_mG_m(x_i)}}{Z^{(m)}}\; ,\qquad i=1,2,3\cdots N\)
其中\(Z^{(m)}\)是规范化因子,\(Z^{(m)} = \sum\limits_{i=1}^Nw^{(m)}_ie^{-y_i\alpha_mG_m(x_i)}\),以确保所有的\(w_i^{(m+1)}\)构成一个分布。
3. 输出最终模型: \(G(x) = sign\left[\sum\limits_{m=1}^M\alpha_mG_m(x) \right]\)
- 另外具体实现了real adaboost, early_stopping,weight_trimming和分步预测 (stage_predict,见完整代码)。
import numpy as np
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.base import clone
from sklearn.metrics import zero_one_loss
import time
class AdaBoost(object):
def __init__(self, M, clf, learning_rate=1.0, method="discrete", tol=None, weight_trimming=None):
self.M = M
self.clf = clf
self.learning_rate = learning_rate
self.method = method
self.tol = tol
self.weight_trimming = weight_trimming
def fit(self, X, y):
# tol为early_stopping的阈值,如果使用early_stopping,则从训练集中分出验证集
if self.tol is not None:
X, X_val, y, y_val = train_test_split(X, y, random_state=2)
former_loss = 1
count = 0
tol_init = self.tol
w = np.array([1 / len(X)] * len(X)) # 初始化权重为1/n
self.clf_total = []
self.alpha_total = []
for m in range(self.M):
classifier = clone(self.clf)
if self.method == "discrete":
if m >= 1 and self.weight_trimming is not None:
# weight_trimming的实现,先将权重排序,计算累积和,再去除权重过小的样本
sort_w = np.sort(w)[::-1]
cum_sum = np.cumsum(sort_w)
percent_w = sort_w[np.where(cum_sum >= self.weight_trimming)][0]
w_fit, X_fit, y_fit = w[w >= percent_w], X[w >= percent_w], y[w >= percent_w]
y_pred = classifier.fit(X_fit, y_fit, sample_weight=w_fit).predict(X)
else:
y_pred = classifier.fit(X, y, sample_weight=w).predict(X)
loss = np.zeros(len(X))
loss[y_pred != y] = 1
err = np.sum(w * loss) # 计算带权误差率
alpha = 0.5 * np.log((1 - err) / err) * self.learning_rate # 计算基学习器的系数alpha
w = (w * np.exp(-y * alpha * y_pred)) / np.sum(w * np.exp(-y * alpha * y_pred)) # 更新权重分布
self.alpha_total.append(alpha)
self.clf_total.append(classifier)
elif self.method == "real":
if m >= 1 and self.weight_trimming is not None:
sort_w = np.sort(w)[::-1]
cum_sum = np.cumsum(sort_w)
percent_w = sort_w[np.where(cum_sum >= self.weight_trimming)][0]
w_fit, X_fit, y_fit = w[w >= percent_w], X[w >= percent_w], y[w >= percent_w]
y_pred = classifier.fit(X_fit, y_fit, sample_weight=w_fit).predict_proba(X)[:, 1]
else:
y_pred = classifier.fit(X, y, sample_weight=w).predict_proba(X)[:, 1]
y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15)
clf = 0.5 * np.log(y_pred / (1 - y_pred)) * self.learning_rate
w = (w * np.exp(-y * clf)) / np.sum(w * np.exp(-y * clf))
self.clf_total.append(classifier)
'''early stopping'''
if m % 10 == 0 and m > 300 and self.tol is not None:
if self.method == "discrete":
p = np.array([self.alpha_total[m] * self.clf_total[m].predict(X_val) for m in range(m)])
elif self.method == "real":
p = []
for m in range(m):
ppp = self.clf_total[m].predict_proba(X_val)[:, 1]
ppp = np.clip(ppp, 1e-15, 1 - 1e-15)
p.append(self.learning_rate * 0.5 * np.log(ppp / (1 - ppp)))
p = np.array(p)
stage_pred = np.sign(p.sum(axis=0))
later_loss = zero_one_loss(stage_pred, y_val)
if later_loss > (former_loss + self.tol):
count += 1
self.tol = self.tol / 2
else:
count = 0
self.tol = tol_init
if count == 2:
self.M = m - 20
print("early stopping in round {}, best round is {}, M = {}".format(m, m - 20, self.M))
break
former_loss = later_loss
return self
def predict(self, X):
if self.method == "discrete":
pred = np.array([self.alpha_total[m] * self.clf_total[m].predict(X) for m in range(self.M)])
elif self.method == "real":
pred = []
for m in range(self.M):
p = self.clf_total[m].predict_proba(X)[:, 1]
p = np.clip(p, 1e-15, 1 - 1e-15)
pred.append(0.5 * np.log(p / (1 - p)))
return np.sign(np.sum(pred, axis=0))
if __name__ == "__main__":
#测试各模型的准确率和耗时
X, y = datasets.make_hastie_10_2(n_samples=20000, random_state=1) # data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
start_time = time.time()
model_discrete = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="discrete", weight_trimming=None)
model_discrete.fit(X_train, y_train)
pred_discrete = model_discrete.predict(X_test)
acc = np.zeros(pred_discrete.shape)
acc[np.where(pred_discrete == y_test)] = 1
accuracy = np.sum(acc) / len(pred_discrete)
print('Discrete Adaboost accuracy: ', accuracy)
print('Discrete Adaboost time: ', '{:.2f}'.format(time.time() - start_time),'\n')
start_time = time.time()
model_real = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="real", weight_trimming=None)
model_real.fit(X_train, y_train)
pred_real = model_real.predict(X_test)
acc = np.zeros(pred_real.shape)
acc[np.where(pred_real == y_test)] = 1
accuracy = np.sum(acc) / len(pred_real)
print('Real Adaboost accuracy: ', accuracy)
print("Real Adaboost time: ", '{:.2f}'.format(time.time() - start_time),'\n')
start_time = time.time()
model_discrete_weight = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="discrete", weight_trimming=0.995)
model_discrete_weight.fit(X_train, y_train)
pred_discrete_weight = model_discrete_weight.predict(X_test)
acc = np.zeros(pred_discrete_weight.shape)
acc[np.where(pred_discrete_weight == y_test)] = 1
accuracy = np.sum(acc) / len(pred_discrete_weight)
print('Discrete Adaboost(weight_trimming 0.995) accuracy: ', accuracy)
print('Discrete Adaboost(weight_trimming 0.995) time: ', '{:.2f}'.format(time.time() - start_time),'\n')
start_time = time.time()
mdoel_real_weight = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="real", weight_trimming=0.999)
mdoel_real_weight.fit(X_train, y_train)
pred_real_weight = mdoel_real_weight.predict(X_test)
acc = np.zeros(pred_real_weight.shape)
acc[np.where(pred_real_weight == y_test)] = 1
accuracy = np.sum(acc) / len(pred_real_weight)
print('Real Adaboost(weight_trimming 0.999) accuracy: ', accuracy)
print('Real Adaboost(weight_trimming 0.999) time: ', '{:.2f}'.format(time.time() - start_time),'\n')
start_time = time.time()
model_discrete = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="discrete", weight_trimming=None, tol=0.0001)
model_discrete.fit(X_train, y_train)
pred_discrete = model_discrete.predict(X_test)
acc = np.zeros(pred_discrete.shape)
acc[np.where(pred_discrete == y_test)] = 1
accuracy = np.sum(acc) / len(pred_discrete)
print('Discrete Adaboost accuracy (early_stopping): ', accuracy)
print('Discrete Adaboost time (early_stopping): ', '{:.2f}'.format(time.time() - start_time),'\n')
start_time = time.time()
model_real = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="real", weight_trimming=None, tol=0.0001)
model_real.fit(X_train, y_train)
pred_real = model_real.predict(X_test)
acc = np.zeros(pred_real.shape)
acc[np.where(pred_real == y_test)] = 1
accuracy = np.sum(acc) / len(pred_real)
print('Real Adaboost accuracy (early_stopping): ', accuracy)
print('Discrete Adaboost time (early_stopping): ', '{:.2f}'.format(time.time() - start_time),'\n')
输出结果:
Discrete Adaboost accuracy: 0.954
Discrete Adaboost time: 43.47
Real Adaboost accuracy: 0.9758
Real Adaboost time: 41.15
Discrete Adaboost(weight_trimming 0.995) accuracy: 0.9528
Discrete Adaboost(weight_trimming 0.995) time: 39.58
Real Adaboost(weight_trimming 0.999) accuracy: 0.9768
Real Adaboost(weight_trimming 0.999) time: 25.39
early stopping in round 750, best round is 730, M = 730
Discrete Adaboost accuracy (early_stopping): 0.9268
Discrete Adaboost time (early_stopping): 14.60
early stopping in round 539, best round is 519, M = 519
Real Adaboost accuracy (early_stopping): 0.974
Discrete Adaboost time (early_stopping): 11.64
- 可以看到,weight_trimming对于Discrete AdaBoost的训练速度无太大提升,而对于Real AdaBoost则较明显,可能原因是Discrete AdaBoost每一轮的权重较分散,而Real AdaBoost的权重集中在少数的样本上。
- early_stopping分别发生在750和539轮,最后准确率也可以接受。
下两张图显示使用weight_trimming的情况下准确率与正常AdaBoost相差无几 (除了0.95的情况)。
Discrete AdaBoost vs. Real AdaBoost - Overfitting
AdaBoost有一个吸引人的特性,那就是其“不会过拟合”,或者更准确的说法是在训练误差下降到零之后继续训练依然能提高泛化性能。如下图所示,训练10000棵树,Real AdaBoost的训练误差早早下降为零,而测试误差几乎平稳不变。而且可以看到 Real AdaBoost 对比 Discrete AdaBoost 无论是训练速度还是准确率都更胜一筹。
Margin理论可以解释这个现象,认为随着训练轮数的增加,即使训练误差已经至零,对于训练样本预测的margin依然会扩大,这等于会不断提升预测的信心。但过去十几年来学术界一直对该理论存在争议,具体可参阅AdaBoost发明者的论文 [Schapire, Explaining AdaBoost]。
Learning Curve
Learning Curve是另一种评估模型的方法,反映随着训练集的增大,训练误差和测试误差的变化情况。通常如果两条曲线比较接近且误差都较大,为欠拟合;如果训练集误差率低,测试集误差率高,二者的曲线会存在较大距离,则为过拟合。
下面来看AdaBoost在上面数据集中的learning curve:
这里总共只选用了5000个数据 (2500训练集 + 2500测试集),因为learning curve的绘制通常需要拟合N个模型 (N为训练样本数),计算量太大。从上图来看Discrete AdaBoost是欠拟合,而Real AdaBoost比较像是过拟合,如果进一步增加数据,Real AdaBoost的测试误差率可能会进一步下降。
完整代码
/
集成学习之Boosting —— AdaBoost实现的更多相关文章
- 集成学习之Boosting —— AdaBoost原理
集成学习大致可分为两大类:Bagging和Boosting.Bagging一般使用强学习器,其个体学习器之间不存在强依赖关系,容易并行.Boosting则使用弱分类器,其个体学习器之间存在强依赖关系, ...
- 集成学习之Boosting —— XGBoost
集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boost ...
- 集成学习之Boosting —— Gradient Boosting原理
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...
- 集成学习二: Boosting
目录 集成学习二: Boosting 引言 Adaboost Adaboost 算法 前向分步算法 前向分步算法 Boosting Tree 回归树 提升回归树 Gradient Boosting 参 ...
- 大白话5分钟带你走进人工智能-第30节集成学习之Boosting方式和Adaboost
目录 1.前述: 2.Bosting方式介绍: 3.Adaboost例子: 4.adaboost整体流程: 5.待解决问题: 6.解决第一个问题:如何获得不同的g(x): 6.1 我们看下权重与函数的 ...
- 集成学习原理:Adaboost
集成学习通过从大量的特征中挑出最优的特征,并将其转化为对应的弱分类器进行分类使用,从而达到对目标进行分类的目的. 核心思想 它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), ...
- 集成学习之Boosting —— Gradient Boosting实现
Gradient Boosting的一般算法流程 初始化: \(f_0(x) = \mathop{\arg\min}\limits_\gamma \sum\limits_{i=1}^N L(y_i, ...
- 机器学习——集成学习之Boosting
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 AdaBoost GB ...
- 决策树(中)-集成学习、RF、AdaBoost、Boost Tree、GBDT
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/li ...
随机推荐
- Linux下tomcat启动项目原因排查
先停掉tomcat服务器: 然后把文件删除: 这时候启动服务器: 看下有没有启动成功: 接着把重新优化过的代码用X ftp传上去. 等几分钟就可以. 如果老是出现问题,就去catalina.out文件 ...
- format的用法:python
https://www.cnblogs.com/wongbingming/p/6848701.html 它通过{}和:来代替%.通过位置 In [1]: '{0},{1}'.format('kzc', ...
- sql server 里的文件和文件组使用
转自:https://www.cnblogs.com/woodytu/p/5821827.html 参考:https://www.sqlskills.com/blogs/paul/files-and- ...
- ssh 配置文件讲解大全 ssh调试模式 sftp scp strace进行调试 特权分离
ssh 配置文件讲解大全 ssh调试模式 sftp scp strace进行调试 特权分离 http://blog.chinaunix.net/uid-16728139-id-3265394.h ...
- spring 返回xml数据
要将对象以xml数据形式返回:参考:https://blog.csdn.net/Pnoter/article/details/52218363 1:创建对象时应该填上xml注解,这样才能将对象转换为x ...
- ref out 区别
1.使用ref型参数时,传入的参数必须先被初始化.对out而言,必须在方法中对其完成初始化. 2.使用ref和out时,在方法的参数和执行方法时,都要加Ref或Out关键字.以满足匹配. 3.out适 ...
- 系统管理命令之w
区别于who命令,w命令不仅可以看到登录服务器的用户信息,而且可以看到这些用户做了什么 1.查看该命令的帮助信息. # w --help 2.查看该命令的版本信息. # w --version 3 ...
- springcloud18---springCloudConfig
package com.itmuch.cloud; import org.springframework.beans.factory.annotation.Value; import org.spri ...
- 人脸识别技术大总结(1):Face Detection & Alignment
http://blog.jobbole.com/85783/ 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...
- INNODB锁(2)
在上一篇文章写了锁的基本概述以及行锁的三种形式,这一篇的主要内容如下: 一致性非锁定读 自增长与锁 外键和锁 一致性性非锁定读 一致性非锁定读是InnoDB通过多版本并发控制(MVCC,multi v ...