Card Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5272    Accepted Submission(s): 2688
Special Judge

Problem Description
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award.

As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.

 
Input
The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks.

Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.

 
Output
Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.

 
Sample Input
1
0.1
2
0.1 0.4
 
Sample Output
10.000
10.500
 
Source
 
    容斥暂时搞不懂,f[S]表示当前收集状态为S距离目标的期望购买次数,S能推出的状态有n+1种,把推完之后状态还是S的移到方程左边,其他的在右边最后算一下答案就好了。(显然推完之后还是S的情况只可能是下一次买的卡是空的或者S中已经有了)。
    

 #include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-10
#define inf 0x3f3f3f3f double f[(<<)+];
double p[];
int main()
{
int t,i,j,k,n,m,u,v;
while(scanf("%d",&n)==){double none=;
for(i=;i<n;++i) scanf("%lf",p+i),none+=p[i];
int all=(<<n)-;
memset(f,,sizeof(f));
for(i=all-;i>=;--i){
double Pj=(double)1.00-none,s=;
for(j=;j<n;++j){
if(i&(<<j)){
Pj+=p[j];
}
else{
s+=p[j]*f[i|(<<j)];
}
}
s+=1.00;
Pj=1.00-Pj;
f[i]=s/Pj;
}
printf("%.5f\n",f[]);
}
return ;
}

  

      容斥做法的话不是很懂说一下简单思路。

    E(至少得到i号卡)=1/pi,把他记作E(i),这个的含义就是一直买卡直至第一次出现i卡时停止的期望购买次数,这个式子是可以推出来的,数学不好真tm烦= =E(至少得到A卡或者B卡的)=E(A|B).

    我们要求的就是E(至少得到1&2&...&N号卡),不妨记作E(1&2&...&N)=E(1)+E(2)+...+E(n)-{E(1|2)+E(2|3)+......}+{E(1|2|3)+...}.....

就这样一直利用容斥定理奇加偶减算出最终的答案。

    以后会了可能会补。

HDU-4336-期望dp-bit的更多相关文章

  1. hdu 4336 概率dp + 状压

    hdu 4336 小吃包装袋里面有随机赠送一些有趣的卡片,如今你想收集齐 N 张卡片.每张卡片在食品包装袋里出现的概率是p[i] ( Σp[i] <= 1 ), 问你收集全部卡片所需购买的食品数 ...

  2. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

  3. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  4. HDU 3853(期望DP)

    题意: 在一个r*c的网格中行走,在每个点分别有概率向右.向下或停止不动.每一步需要的时间为2,问从左上角走到右下角的期望时间. SOL: 非常水一个DP...(先贴个代码挖个坑 code: /*== ...

  5. hdu 4336 概率dp

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率为p1,p2,````pN.每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 转移方程: ...

  6. HDU 4035 期望dp

    这道题站在每个位置上都会有三种状态 死亡回到起点:k[i] 找到出口结束 e[i] 原地不动 p[i] k[i]+e[i]+p[i] =1; 因为只给了n-1条路把所有都连接在一起,那么我们可以自然的 ...

  7. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  8. HDU 4405 Aeroplane chess 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...

  9. HDU 3853 LOOPS:期望dp【网格型】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意: 有一个n*m的网格. 给出在每个格子时:留在原地.向右走一格,向下走一格的概率. 每走一 ...

  10. 升级降级(期望DP)2019 Multi-University Training Contest 7 hdu杭电多校第7场(Kejin Player)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6656 题意: 有 1~n 个等级,你现在是1级,求升到n级的花费期望.会给你n个条件(i~i+1级升级 ...

随机推荐

  1. 解决Ubuntu14.04下vi编辑器不能使用方向键和退格键问题

    参考:http://blog.sina.com.cn/s/blog_7d0c2fed01010zbi.html 系统:Ubuntu14.04 使用vi命令时,不能正常编辑文件,使用方向键时老是出现很多 ...

  2. has to be escaped using backslash to be included in string value\n

    [root@d myssh]# cat ESdel_bulk_file1544528090.log{"error":{"root_cause":[{" ...

  3. 【asm】64位编译32位汇编需要注意的

    汇编语言在32位和64位下有区别    32位的汇编在代码前增加.code32    as可以通过--32指定生成32位汇编 在64位系统下ld链接生成32位程序:    ld: i386 archi ...

  4. Qt 模拟鼠标点击(QApplication::sendEvent(ui->pushbutton, &event0);)

    QPoint pos(0,0);QMouseEvent event0(QEvent::MouseButtonPress, pos, Qt::LeftButton, Qt::LeftButton, Qt ...

  5. 约会安排---hdu4553(线段树,麻烦的区间覆盖)

      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4553 算是poj3667的加强版,建立两颗线段树,一个是DS区间,另一个是NS区间.那么根据题意, ...

  6. 【我的Android进阶之旅】解决Android Studio 运行gradle命令时报错: 错误: 编码GBK的不可映射字符

    1.问题描述 最近在负责公司基础业务和移动基础设施的开发工作,正在负责Lint代码静态检查工作.因此编写了自定义的Lint规则,在调试过程中,编译的时候出现了如下所示的错误: 部分输出日志如下所示: ...

  7. android(十四)四种启动模式

    standard 启动的activity会每次都重新创建一个activity放到任务栈中.这是系统默认的启动模式. singleTop启动的activity,如果任务的栈顶刚好存在当前的activit ...

  8. centos7上安装php5.6

    配置yum源 追加CentOS 6.5的epel及remi源. # rpm -Uvh http://ftp.iij.ad.jp/pub/linux/fedora/epel/6/x86_64/epel- ...

  9. Sparsity稀疏编码(一)

    稀疏编码来源于神经科学,计算机科学和机器学习领域一般一开始就从稀疏编码算法讲起,上来就是找基向量(超完备基),但是我觉得其源头也比较有意思,知道根基的情况下,拓展其应用也比较有底气.哲学.神经科学.计 ...

  10. iis6下配置支持.net4.0&发布网站[转]

    iis6配置支持.net4.0 在win2003操作系统上发布两个网站,首先配置iis: 1.下载 .net framework 4.0   差不多48MB 2.安装 3.打开iis: 开始=> ...