题意

用K个颜色给魔方染色,魔方只能整体旋转并且旋转重合的方案算一种,求一共有多少不同的染色方案。

思路

经典的Polya应用,记住正六面体的置换群就可以了,魔方就是每个大面变成9个小面了而已:

本题模型共有4大类置换,共24种:

1. 不做任何旋转 K ^ (54 + 12 + 8)

2. 绕相对面中心的轴转

1) 90度 K ^ (15 + 3 + 2) * 3

1) 180度 K ^ (28 + 6 + 4) * 3

1) 270度 K ^ (15 + 3 + 2) * 3

3. 绕相对棱中心的轴转

1) 180度 K ^ (27 + 7 + 4) * 6

4. 绕相对顶点的轴转

1) 120度 K ^ (18 + 4 + 4) * 4

1) 240度 K ^ (18 + 4 + 4) * 4

然后直接套公式即可~

哦还有一点需要注意的是(A/B) % C = A % (B*C) / C。大部分人是把除法转化为模逆元的乘法,反正我是不懂……

代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, end) for (int i = begin; i <= end; i ++)
using namespace std;

int res;
const int mod = 10007 * 24;
int powi(int n, int p){
int res = 1;
for (int i = 1; i <= p; i ++){
res = res * n % mod;
}
return res;
}

int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int t, k;
scanf("%d", &t);
for (int i = 1; i <= t; i ++){
scanf("%d", &k);
res = (powi(k, 74) + 6 * powi(k, 20) + 3 * powi(k, 38) + 6 * powi(k, 38) + 8 * powi(k, 26)) % mod;
res /= 24;
printf("Case %d: %d\n", i, res);
}
return 0;
}
[/cpp]

HDU 4633 Who's Aunt Zhang ★(Polya定理 + 除法取模)的更多相关文章

  1. HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个 ...

  2. HDU 4633 Who's Aunt Zhang (2013多校4 1002 polya计数)

    Who's Aunt Zhang Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. hdu 4633 Who's Aunt Zhang(polya+逆元)

    Who's Aunt Zhang Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. HDU 4633 Who's Aunt Zhang(polay计数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4633 题意:有下面一个魔方.有K种颜色.可以为顶点.边.面(每个面有9个小面)染色.两种染色算作一种当 ...

  5. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  6. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  7. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  8. 51nod1119(除法取模/费马小定理求组合数)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...

  9. hdu 1817 Necklace of Beads(Polya定理)

    Necklace of Beads Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. HTTP监视器charles入门使用教程分享---http/s packet monitors---ubuntu installation

    charles --usage http://www.cnblogs.com/chenlogin/p/5849471.html 按照Charles的提示,PC打开 chls.pro/ssl下载得到一个 ...

  2. logger类

    日志模块logging的四大组件: logger: 志类应用程序往往通调用提供api记录志handler: 志信息处理志发送(保存)同目标域filter: 志信息进行滤formatter:志格式化 L ...

  3. CEO 是一家创业公司的天花板

    大家说是不是呢?一秒钟内看到本质的人,和半辈子也看不清一件事本质的人,自然是不一样的命运.

  4. Gitlab汉化为中文版

    查看当前的gitlab版本号 cat /opt/gitlab/embedded/service/gitlab-rails/VERSION 11.1.4 打开这个网址:https://gitlab.co ...

  5. 什么是API测试

    什么是API API是Application Programming Interface的简写. 实现了两个或多个独立系统或模块间的通信和数据交换能力. 什么是API测试 图片.png API测试是不 ...

  6. Console 窗口

    Console窗口 记住,即是在GUI程序中你也可以拥有一个Console窗口.----这意味着你可以再GUI程序中使用printf.puts. Console窗口由系统的驱动设备程序负责,即是你的程 ...

  7. cocos代码研究(11)ActionManager类学习笔记

    理论部分 ActionManager是一个单例类,管理所有动作. 通常你不需要直接使用这个类.大多情况下,你将使用Node的接口,它提供了更友好的封装 但也有一些情况下,你可能需要使用这个单例. 示例 ...

  8. addslashes — 使用反斜线引用字符串

    返回字符串,该字符串为了数据库查询语句等的需要在某些字符前加上了反斜线.这些字符是单引号(').双引号(").反斜线(\)与 NUL( NULL 字符). 一个使用 addslashes() ...

  9. node核心:异步流程控制

    Node.js的异步是整个学习Node.js过程中重中之重. 1)异步流程控制学习重点 2)Api写法:Error-first Callback 和 EventEmitter 3)中流砥柱:Promi ...

  10. VS2010/MFC编程入门之二十二(常用控件:按钮控件Button、Radio Button和Check Box)

    言归正传,鸡啄米上一节中讲了编辑框的用法,本节继续讲解常用控件--按钮控件的使用. 按钮控件简介 按钮控件包括命令按钮(Button).单选按钮(Radio Button)和复选框(Check Box ...