SalGAN: Visual saliency prediction with generative adversarial networks

2017-03-17

  摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测。虽然我们老板很不喜欢显著性,但是,做显著性检测的人还是会说:这是有意义的。如本文说的:恩,显著性可以作为 soft-attention,来引导其他计算机视觉任务的进行,也可以直接引导 marketing 领域。

  本文区别于其他方法最显著的地方在于:the usage of generatvie adversarial networks。本文将训练分为两个阶段:

    1. 产生器产生一个服从训练集合的伪造的样本;

    2. 判别器就是用于判断给定的样本是 真实的 还是 伪造的。

  本文中谈到的 data distribution 意思是:实际的图像 和 对应的显著性图。

    本文总结的贡献点是:

    1. 探索了 GAN 在显著性物体检测上的应用,在某些数据集上取得了不错的效果;

    2. 在训练 DCNN 时,应用 二元交叉熵损失函数 和 下采样显著性图 是可以提升效果的。

  本文的网络框架设计如图所示:

  

  网络结构分析:

  1. 产生器:
    Convolutional encoder-decoder architecture

  2. 判别器:

    就是一个 CNN 结构。

  

  训练(Training):

  1. Content Loss

    由于 产生器 部分的输出是 saliency map,要计算的这部分就是:输出的 saliency map 和 gt saliency map 之间均方差 loss 。

    用的就是 两个 map 之间的欧式距离:

    

    本文中 MSE 就是用来作为 baseline 的,因为大部分显著性检测的方法都是基于这个 loss function。GT saliency maps 被归一化到 0-1 之间。

    这里用到了 二元交叉熵损失函数:

    

  2. 对抗损失

    关于 GAN 这里就不在介绍了,那么显著性检测和 gan 有什么不同呢?

    1. 首先,目标是拟合一个 决策函数 来产生实际的 saliency values,而不是从随机的 noise 中得到 真实的图像;

        这样的话,输入给产生器的东西就不再是 随机的 noise,而是一张图像;

    2. 其次,显著性所对应的图 是衡量质量的;

        所以我们将图像和 saliency map 作为输入给产生器

    3. 最后,在 GAN 产生图像的时候,没有 gt 进行对比,属于无监督学习;

        但是,在显著性检测的时候,我们是有现有的 gt 作为对比的。

    

  我们发现产生器函数更新的时候,我们发现 利用判别器的loss 和 对比gt得到的交叉熵损失函数,可以显著地提升对抗训练的稳定性和收敛速度。

  最终的 loss function 可以定义为:

  

  


  实验结果:

    

SalGAN: Visual saliency prediction with generative adversarial networks的更多相关文章

  1. GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

    GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...

  2. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  3. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  4. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  5. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  6. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  7. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  8. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  9. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

随机推荐

  1. 大数据处理框架之Strom:redis storm 整合

    storm 引入redis ,主要是使用redis缓存库暂存storm的计算结果,然后redis供其他应用调用取出数据. 新建maven工程 pom.xml <project xmlns=&qu ...

  2. 大数据处理框架之Strom:Storm集群环境搭建

    搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo)      zookeeper-3.4.11 jdk1.7.0_80      Pyth ...

  3. 使用SpringAOP获取一次请求流经方法的调用次数和调用耗时

    引语 作为工程师,不能仅仅满足于实现了现有的功能逻辑,还必须深入认识系统.一次请求,流经了哪些方法,执行了多少次DB操作,访问了多少次文件操作,调用多少次API操作,总共有多少次IO操作,多少CPU操 ...

  4. SQLServer 创建自己的数据库

    1)进入数据库服务器,创建自己的数据库 use master go create database Dt_Devtest on primary(name=[Dt_new_data],filename= ...

  5. Linux基础命令---join

    join 找出两个文件中相同的字段,根据相同字段合并两个文件,将合并结果显示到标准输出. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora ...

  6. TensorFire:WEB端的高性能神经网络框架

    TensorFire:WEB端的高性能神经网络框架 摘要: 近日,一种专门用于在网页内执行神经网络算法的JavaScript库——TensorFire引起了人们的关注,这种JavaScript库在浏览 ...

  7. 蓝牙Profile的概念和常见种类(转)

    蓝牙Profile Bluetooth的一个很重要特性,就是所有的Bluetooth产品都无须实现全部 的Bluetooth规范.为了更容易的保持Bluetooth设备之间的兼容,Bluetooth规 ...

  8. 苹果手机显示分享链接的方法html页面

    function onBridgeReady(){ WeixinJSBridge.call('showOptionMenu'); } if (typeof WeixinJSBridge == &quo ...

  9. jquery遍历获取每一行数据进行对比

    $("#dtlTable tr:gt(0)").each(function(i){ var orderQtyBy = $("input[name='orderQtyBys ...

  10. echarts遇到的问题

    X轴无偏移: axisTick: { alignWithLabel: true }, x轴显示所有数据项且避免拥挤在xAxis设置: axisLabel: { interval: 0, rotate: ...