SalGAN: Visual saliency prediction with generative adversarial networks

2017-03-17

  摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测。虽然我们老板很不喜欢显著性,但是,做显著性检测的人还是会说:这是有意义的。如本文说的:恩,显著性可以作为 soft-attention,来引导其他计算机视觉任务的进行,也可以直接引导 marketing 领域。

  本文区别于其他方法最显著的地方在于:the usage of generatvie adversarial networks。本文将训练分为两个阶段:

    1. 产生器产生一个服从训练集合的伪造的样本;

    2. 判别器就是用于判断给定的样本是 真实的 还是 伪造的。

  本文中谈到的 data distribution 意思是:实际的图像 和 对应的显著性图。

    本文总结的贡献点是:

    1. 探索了 GAN 在显著性物体检测上的应用,在某些数据集上取得了不错的效果;

    2. 在训练 DCNN 时,应用 二元交叉熵损失函数 和 下采样显著性图 是可以提升效果的。

  本文的网络框架设计如图所示:

  

  网络结构分析:

  1. 产生器:
    Convolutional encoder-decoder architecture

  2. 判别器:

    就是一个 CNN 结构。

  

  训练(Training):

  1. Content Loss

    由于 产生器 部分的输出是 saliency map,要计算的这部分就是:输出的 saliency map 和 gt saliency map 之间均方差 loss 。

    用的就是 两个 map 之间的欧式距离:

    

    本文中 MSE 就是用来作为 baseline 的,因为大部分显著性检测的方法都是基于这个 loss function。GT saliency maps 被归一化到 0-1 之间。

    这里用到了 二元交叉熵损失函数:

    

  2. 对抗损失

    关于 GAN 这里就不在介绍了,那么显著性检测和 gan 有什么不同呢?

    1. 首先,目标是拟合一个 决策函数 来产生实际的 saliency values,而不是从随机的 noise 中得到 真实的图像;

        这样的话,输入给产生器的东西就不再是 随机的 noise,而是一张图像;

    2. 其次,显著性所对应的图 是衡量质量的;

        所以我们将图像和 saliency map 作为输入给产生器

    3. 最后,在 GAN 产生图像的时候,没有 gt 进行对比,属于无监督学习;

        但是,在显著性检测的时候,我们是有现有的 gt 作为对比的。

    

  我们发现产生器函数更新的时候,我们发现 利用判别器的loss 和 对比gt得到的交叉熵损失函数,可以显著地提升对抗训练的稳定性和收敛速度。

  最终的 loss function 可以定义为:

  

  


  实验结果:

    

SalGAN: Visual saliency prediction with generative adversarial networks的更多相关文章

  1. GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

    GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...

  2. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  3. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  4. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  5. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  6. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  7. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  8. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  9. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

随机推荐

  1. 向SQL Server中导入Excel的数据

    1.  手动界面导入Excel数据 同 https://jingyan.baidu.com/article/ce09321b9a0e252bff858ff9.html 首先打开并登陆sql serve ...

  2. QT 继承QWidget && 继承QDialog

    工作项目中,利用到Qt对话框,场景需求: 1. 一部分窗体需要继承自QWidget 2. 一部分窗体需要继承自QDialog 3. 两者均需要去掉标题栏图标,同时能够自由拖动. 如果两者分开继承实现, ...

  3. linux centos 如何设置swap大小?

    linux centos 如何设置swap大小? swap的值都是安装系统的时候设置好的,一般设置为内存的两倍大小.使用过程中发现swap值过小只能添加.用free -m 命令查看当前swap大小 使 ...

  4. 外网上传到NAS速度很慢是什么情况?上行1M都不到,但是测试有4M

    外网上传到NAS速度很慢是什么情况?上行1M都不到,但是测试有4M NAS可以将自己的影片,图片,音乐都放在NAS中.在家中就能无线共享了.在其他地方要下载自己nas里的影片,下载速度主要取决于家里宽 ...

  5. 两眼论&矩阵变现理论结合打造赚钱大模式

    两眼论&矩阵变现理论结合打造赚钱大模式 围棋有一个基本规则,就是一块棋有两只真眼,就是活棋. 围棋没有复杂的规则,它最有趣的地方是没有太多的规则和限制,由此演变出了大千世界,所以古人云“棋如人 ...

  6. 新建git并将本地代码上传到分支

    1 查看远程分支 $ git branch -a * br-2.1.2.2 master remotes/origin/HEAD -> origin/master remotes/origin/ ...

  7. MyEclipse非正常关闭问题

    问题:电脑突然断电,myeclipse非正常关闭,“Package Explorer”非正常显示,出现错误“Could not create the view: An unexpected excep ...

  8. PYTHON 对SQLITE3的简单使用

    SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成.Python就内 ...

  9. mysql 查看当前使用的配置文件my.cnf的方法(推荐)

    my.cnf是mysql启动时加载的配置文件,一般会放在mysql的安装目录中,用户也可以放在其他目录加载. 安装mysql后,系统中会有多个my.cnf文件,有些是用于测试的. 使用locate m ...

  10. pyqt5 树节点点击实现多窗口切换

    # coding=utf-8 import sys from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui ...