SalGAN: Visual saliency prediction with generative adversarial networks

2017-03-17

  摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测。虽然我们老板很不喜欢显著性,但是,做显著性检测的人还是会说:这是有意义的。如本文说的:恩,显著性可以作为 soft-attention,来引导其他计算机视觉任务的进行,也可以直接引导 marketing 领域。

  本文区别于其他方法最显著的地方在于:the usage of generatvie adversarial networks。本文将训练分为两个阶段:

    1. 产生器产生一个服从训练集合的伪造的样本;

    2. 判别器就是用于判断给定的样本是 真实的 还是 伪造的。

  本文中谈到的 data distribution 意思是:实际的图像 和 对应的显著性图。

    本文总结的贡献点是:

    1. 探索了 GAN 在显著性物体检测上的应用,在某些数据集上取得了不错的效果;

    2. 在训练 DCNN 时,应用 二元交叉熵损失函数 和 下采样显著性图 是可以提升效果的。

  本文的网络框架设计如图所示:

  

  网络结构分析:

  1. 产生器:
    Convolutional encoder-decoder architecture

  2. 判别器:

    就是一个 CNN 结构。

  

  训练(Training):

  1. Content Loss

    由于 产生器 部分的输出是 saliency map,要计算的这部分就是:输出的 saliency map 和 gt saliency map 之间均方差 loss 。

    用的就是 两个 map 之间的欧式距离:

    

    本文中 MSE 就是用来作为 baseline 的,因为大部分显著性检测的方法都是基于这个 loss function。GT saliency maps 被归一化到 0-1 之间。

    这里用到了 二元交叉熵损失函数:

    

  2. 对抗损失

    关于 GAN 这里就不在介绍了,那么显著性检测和 gan 有什么不同呢?

    1. 首先,目标是拟合一个 决策函数 来产生实际的 saliency values,而不是从随机的 noise 中得到 真实的图像;

        这样的话,输入给产生器的东西就不再是 随机的 noise,而是一张图像;

    2. 其次,显著性所对应的图 是衡量质量的;

        所以我们将图像和 saliency map 作为输入给产生器

    3. 最后,在 GAN 产生图像的时候,没有 gt 进行对比,属于无监督学习;

        但是,在显著性检测的时候,我们是有现有的 gt 作为对比的。

    

  我们发现产生器函数更新的时候,我们发现 利用判别器的loss 和 对比gt得到的交叉熵损失函数,可以显著地提升对抗训练的稳定性和收敛速度。

  最终的 loss function 可以定义为:

  

  


  实验结果:

    

SalGAN: Visual saliency prediction with generative adversarial networks的更多相关文章

  1. GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

    GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds 2019 ...

  2. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  3. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  4. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  5. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  6. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  7. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  8. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  9. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

随机推荐

  1. jQuery属性--addClass()和removeClass()

       addClass(class|fn) 概述 为每个匹配的元素添加指定的类名 参数 class  一个或多个要添加到元素中的CSS类名,请用空格分开: function(index, class) ...

  2. 【Linux学习八】脚本编程

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 一.多层bash#.和source都是当前bash [root@nod ...

  3. Qt Md5应用示例

    [1].cpp文件 #include "widget.h" #include "ui_widget.h" #include <QCryptographic ...

  4. 功能的显著性分析——GO Enrichment Analysis

      Gene Ontology(GO)是基因功能国际标准分类体系.GO富集分析是对差异基因等按GO分类,并对分类结果进行基于离散分布的显著性分析.错判率分析.富集度分析,得到与实验目的有显著联系的.低 ...

  5. 激活win10

    网盘地址 http://pan.baidu.com/s/1nvc5I1V 里面是2个东西,一个是rar解压缩软件,一个是激活工具本体 一个解压缩软件,一个激活工具的压缩包 安装解压软件,就是WINRA ...

  6. 安装mysql警告 warning: mysql-community-server-5.7.19-1.el6.x86_64.rpm: Header V3 DSA/SHA1 Signature, key ID 5072e1f5: NOKEY

    摘自:https://www.cnblogs.com/royfans/p/7243641.html 红帽安装rpm安装MySQL时爆出警告: 警告:MySQL-server-5.5.46-1.linu ...

  7. VMware激活密钥

    VMware 2017 v14.x 永久许可证激活密钥FF31K-AHZD1-H8ETZ-8WWEZ-WUUVACV7T2-6WY5Q-48EWP-ZXY7X-QGUWD 原文链接

  8. Mysql高级第一天(laojia)

    select char_length('我们love'); select *, char_length(sname) '姓名字数' from tbl_student; select '对方' + '5 ...

  9. MyEclipse配置默认自带的HTML/JSP代码格式化

    MyEclipse自带默认的HTML/JSP代码格式化并不适合个人开发习惯,因此特意配置如下: 设置行宽为:720(直接加10倍) 使用tabs缩进,单位:1 缩进标签元素要求删除: a开头:a. b ...

  10. Git 常用命令列表

    1 常用 $ git remote add origin git@github.com:yeszao/dofiler.git # 配置远程git版本库 $ git pull origin master ...