矩阵乘法加速线性递推的典型

大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项

跑的飞快

虽然我也不知道那个矩阵要怎么构造

或许就像我使用了瞪眼法和枚举法

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = ;
int n;
struct Matrix{
static const int MAXN = ;
int alpha[MAXN][MAXN];
int n,m;
void init(void){
for(int i=;i<MAXN;i++)
for(int j=;j<MAXN;j++)
alpha[i][j]=;
n=m=;
}
void init_f2(void){
n=;m=;
alpha[][]=;
alpha[][]=;
alpha[][]=;
alpha[][]=;
}
void init_f(void){
n=;m=;
alpha[][]=;
alpha[][]=;
}
void init_pow(int x){
for(int i=;i<=x;i++)
alpha[i][i]=;
m=n=x;
}
Matrix operator * (Matrix b){
Matrix c;
c.init();
for(int i=;i<=n;i++)
for(int j=;j<=b.m;j++)
for(int k=;k<=m;k++)
c.alpha[i][j]=(c.alpha[i][j]%MOD+alpha[i][k]*b.alpha[k][j]%MOD)%MOD;
c.n=n;
c.m=b.m;
return c;
}
};
Matrix pow(Matrix a,int p){
Matrix ans;
ans.init();
ans.init_pow(a.n);
while(p){
if(p&)
ans=ans*a;
a=a*a;
p>>=;
}
return ans;
}
signed main(){
scanf("%lld",&n);
Matrix f,f2,ans;
f.init();
f.init_f();
f2.init();
f2.init_f2();
ans=pow(f2,n-);
// for(int i=1;i<=ans.n;i++){
// for(int j=1;j<=ans.m;j++)
// printf("%d ",ans.alpha[i][j]);
// printf("\n");
// }
f=f*ans;
printf("%lld",f.alpha[][]%MOD);
return ;
}

题解——洛谷P1962 斐波那契数列(矩阵乘法)的更多相关文章

  1. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  2. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  3. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  4. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  5. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  6. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  7. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  8. 洛谷 P1962 斐波那契数列

    题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...

  9. 洛谷P1962 斐波那契数列

    传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...

随机推荐

  1. html5-样式的三种方式

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  2. PowMod (欧拉推式子 + 指数循环节)

    最主要的步骤是用 1式子和2式子推 3式子.(难点,看了很多博客最后的时候那个式子看不懂) 当n, m互质时即gcd(n, m) == 1,存在phi(n * m) = phi(m) * phi(n) ...

  3. Lua语言特色

    [1]多重赋值 多重赋值规则:若值的个数少于变量的个数,那么多余的变量会被赋值为nil 若值的个数多余变量的个数,那么多余的值会被“悄悄地”丢弃掉. 多重赋值应用示例: a, b = , * prin ...

  4. 20165215 2017-2018-2 《Java程序设计》第4周学习总结

    20165215 2017-2018-2 <Java程序设计>第4周学习总结 教材学习内容总结 chapter5 子类与父类 子类的定义使用关键字extends 任何类都是Object类的 ...

  5. GUI常用对话框3

    %进度条 %waitbar h=waitbar(,'实例'); get(h); %获得进度条的子对象 get(get(h,'Children')) ha=get(h,'Children'); %获得坐 ...

  6. 直播协议的选择:RTMP vs. HLS

    文章转自:直播协议的选择:RTMP vs. HLS 前言 随着直播业务的兴起,越来越多的直播平台开始涌现,这火热的程度好像一个应用不带上直播业务出来都不好意思跟人打招呼.想要做一个直播业务,主要包括三 ...

  7. MyEclipse与Eclipse配置清单

    MyEclipse与Eclipse配置清单 1.编码设置    workspace -> 设置全局编码utf-8    修改JSP编码(Encoding)为UTF-82.Java配置    格式 ...

  8. JOBDU 题目1100:最短路径

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5786 解决:902 题目描述: N个城市,标号从0到N-1,M条道路,第K条道路(K从0开始)的长度为2^K,求编号为0的城市到其他城市的 ...

  9. 利用apache伪静态技术防止盗链

    (在我们制作网站的过程中,可能会遇到这样的问题,就是其他的网站直接盗用了我们网站的图片或css或js,这样可能会大大增加我们自己网站的负载. 所以,我们应该考虑一下怎样防止这样的事情发生.) 下面我们 ...

  10. Mysql 按天自动分区,合并老分区

    适用于每天一个分区...不断加分区,导致分区不够用的情况 CREATE DEFINER=hehe@XXXXXX PROCEDURE p_auto_partition_day(IN databaseNa ...