Configure a Pod to Use a PersistentVolume for Storage

how to configure a Pod to use a PersistentVolumeClaim for storage.

Here is a summary of the process:

  1. A cluster administrator creates a PersistentVolume that is backed by physical storage. The administrator does not associate the volume with any Pod.

  2. A cluster user creates a PersistentVolumeClaim, which gets automatically bound to a suitable PersistentVolume.

  3. The user creates a Pod that uses the PersistentVolumeClaim as storage.

Create a PersistentVolume

Kubernetes supports hostPath for development and testing on a single-node cluster.

A hostPath PersistentVolume uses a file or directory on the Node to emulate network-attached storage.

In a production cluster, you would not use hostPath.

Instead a cluster administrator would provision a network resource like a Google Compute Engine persistent disk, an NFS share, or an Amazon Elastic Block Store volume.

Cluster administrators can also use StorageClasses to set up dynamic provisioning.

#create file

#Open a shell to the Node in your cluster.

#create a /mnt/data directory
mkdir /mnt/data #In the /mnt/data directory,create an index.html file
echo 'Hello from Kubernetes storage' > /mnt/data/index.html

  

kind: PersistentVolume
apiVersion: v1
metadata:
name: task-pv-volume
labels:
type: local
spec:
storageClassName: manual
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/mnt/data"

configuration file for the hostPath PersistentVolume 

The configuration file specifies that the volume is at /mnt/data on the cluster’s Node.

The configuration also specifies a size of 10 gibibytes and an access mode of ReadWriteOnce, which means the volume can be mounted as read-write by a single Node.

It defines the StorageClass name manual for the PersistentVolume, which will be used to bind PersistentVolumeClaim requests to this PersistentVolume.

#get PersistentVolumnClaim
kubectl get pv task-pv-volume

The output shows that the PersistentVolume has a STATUS of Available. This means it has not yet been bound to a PersistentVolumeClaim.  

Create a PersistentVolumeClaim

Pods use PersistentVolumeClaims to request physical storage.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: task-pv-claim
spec:
storageClassName: manual
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 3Gi

configuration file for the PersistentVolumeClaim

create a PersistentVolumeClaim that requests a volume of at least three gibibytes that can provide read-write access for at least one Node.

After you create the PersistentVolumeClaim, the Kubernetes control plane looks for a PersistentVolume that satisfies the claim’s requirements.

If the control plane finds a suitable PersistentVolume with the same StorageClass, it binds the claim to the volume.

#Look again at the PersistentVolume:
kubectl get pv task-pv-volume
# a STATUS of Bound. #Look at the PersistentVolumeClaim:
kubectl get pvc task-pv-claim
# shows that the PersistentVolumeClaim is bound to your PersistentVolume, task-pv-volume.

  

Create a Pod

create a Pod that uses your PersistentVolumeClaim as a volume.

kind: Pod
apiVersion: v1
metadata:
name: task-pv-pod
spec:
volumes:
- name: task-pv-storage
persistentVolumeClaim:
claimName: task-pv-claim
containers:
- name: task-pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: task-pv-storage

the Pod’s configuration file specifies a PersistentVolumeClaim, but it does not specify a PersistentVolume.

From the Pod’s point of view, the claim is a volume.  

#Verify that the Container in the Pod is running;
kubectl get pod task-pv-pod #Get a shell to the Container running in your Pod:
kubectl exec -it task-pv-pod -- /bin/bash #In your shell, verify that nginx is serving the index.html file from the hostPath volume:
root@task-pv-pod:/# apt-get update
root@task-pv-pod:/# apt-get install curl
root@task-pv-pod:/# curl localhost #The output shows the text that you wrote to the index.html file on the hostPath volume:
Hello from Kubernetes storage

  

Access control

Storage configured with a group ID (GID)

allows writing only by Pods using the same GID.

Mismatched or missing GIDs cause permission denied errors.

 

To reduce the need for coordination with users, an administrator can annotate a PersistentVolume with a GID.

Then the GID is automatically added to any Pod that uses the PersistentVolume.

kind: PersistentVolume
apiVersion: v1
metadata:
name: pv1
annotations:
pv.beta.kubernetes.io/gid: "1234"

Use the pv.beta.kubernetes.io/gid annotation  

When a Pod consumes a PersistentVolume that has a GID annotation, the annotated GID is applied to all Containers in the Pod in the same way that GIDs specified in the Pod’s security context are.

Every GID, whether it originates from a PersistentVolume annotation or the Pod’s specification, is applied to the first process run in each Container.

Configure a Pod to Use a Projected Volume for Storage

how to use a projected volume to mount several existing volume sources into the same directory.

Currently, secret, configMap, and downwardAPI volumes can be projected.

Configure a projected volume for a pod

apiVersion: v1
kind: Pod
metadata:
name: test-projected-volume
spec:
containers:
- name: test-projected-volume
image: busybox
args:
- sleep
- "86400"
volumeMounts:
- name: all-in-one
mountPath: "/projected-volume"
readOnly: true
volumes:
- name: all-in-one
projected:
sources:
- secret:
name: user
- secret:
name: pass

create username and password Secrets from local files.

create a Pod that runs one Container, using a projected Volume to mount the Secrets into the same shared directory.

#Create the Secrets:

# Create files containing the username and password:
echo -n "admin" > ./username.txt
echo -n "1f2d1e2e67df" > ./password.txt # Package these files into secrets:
kubectl create secret generic user --from-file=./username.txt
kubectl create secret generic pass --from-file=./password.txt #Create the Pod:
kubectl create -f projected-volume.yaml #Verify that the Pod’s Container is running, and then watch for changes to the Pod:
kubectl get --watch pod test-projected-volume #In another terminal, get a shell to the running Container:
kubectl exec -it test-projected-volume -- /bin/sh #In your shell, verify that the projected-volume directory contains your projected sources:
ls /projected-volume/

 

Configure a Security Context for a Pod or Container

A security context defines privilege and access control settings for a Pod or Container.

Security context settings include:

  • Discretionary Access Control: Permission to access an object, like a file, is based on user ID (UID) and group ID (GID).

  • Security Enhanced Linux (SELinux): Objects are assigned security labels.

  • Running as privileged or unprivileged.

  • Linux Capabilities: Give a process some privileges, but not all the privileges of the root user.

  • AppArmor: Use program profiles to restrict the capabilities of individual programs.

  • Seccomp: Filter a process’s system calls.

  • AllowPrivilegeEscalation: Controls whether a process can gain more privileges than its parent process. This bool directly controls whether the no_new_privs flag gets set on the container process. AllowPrivilegeEscalation is true always when the container is: 1) run as Privileged OR 2) has CAP_SYS_ADMIN.

Set the security context for a Pod

apiVersion: v1
kind: Pod
metadata:
name: security-context-demo
spec:
securityContext:
runAsUser: 1000
fsGroup: 2000
volumes:
- name: sec-ctx-vol
emptyDir: {}
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0
volumeMounts:
- name: sec-ctx-vol
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

To specify security settings for a Pod, include the securityContext field in the Pod specification.

The securityContext field is a PodSecurityContext object.

The security settings that you specify for a Pod apply to all Containers in the Pod.

a configuration file for a Pod that has a securityContext and an emptyDir volume

In the configuration file, the runAsUser field specifies that for any Containers in the Pod, the first process runs with user ID 1000.

The fsGroup field specifies that group ID 2000 is associated with all Containers in the Pod.

Group ID 2000 is also associated with the volume mounted at /data/demo and with any files created in that volume.

kubectl exec -it security-context-demo -- sh

#list the running processes:
ps aux #The output shows that the processes are running as user 1000, which is the value of runAsUser:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
1000 1 0.0 0.0 4336 724 ? Ss 18:16 0:00 /bin/sh -c node server.js
1000 5 0.2 0.6 772124 22768 ? Sl 18:16 0:00 node server.js
... #navigate to /data, and list the one directory:
cd /data
ls -l # shows that the /data/demo directory has group ID 2000, which is the value of fsGroup
drwxrwsrwx 2 root 2000 4096 Jun 6 20:08 demo #navigate to /data/demo, and create a file:
cd demo
echo hello > testfile #List the file in the /data/demo directory:
ls -l #The output shows that testfile has group ID 2000, which is the value of fsGroup.
-rw-r--r-- 1 1000 2000 6 Jun 6 20:08 testfile #Exit your shell:
exit

  

Set the security context for a Container

apiVersion: v1
kind: Pod
metadata:
name: security-context-demo-2
spec:
securityContext:
runAsUser: 1000
containers:
- name: sec-ctx-demo-2
image: gcr.io/google-samples/node-hello:1.0
securityContext:
runAsUser: 2000
allowPrivilegeEscalation: false

To specify security settings for a Container, include the securityContext field in the Container manifest. The securityContext field is a SecurityContext object.

Security settings that you specify for a Container apply only to the individual Container, and they override settings made at the Pod level when there is overlap.

Container settings do not affect the Pod’s Volumes.

the configuration file for a Pod that has one Container. Both the Pod and the Container have a securityContext field:

#Get a shell into the running Container:
kubectl exec -it security-context-demo-2 -- sh #In your shell, list the running processes:
ps aux #The output shows that the processes are running as user 2000. This is the value of runAsUser specified for the Container. It overrides the value 1000 that is specified for the Pod.
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
2000 1 0.0 0.0 4336 764 ? Ss 20:36 0:00 /bin/sh -c node server.js
2000 8 0.1 0.5 772124 22604 ? Sl 20:36 0:00 node server.js
...

  

Set capabilities for a Container

With Linux capabilities, you can grant certain privileges to a process without granting all the privileges of the root user.

To add or remove Linux capabilities for a Container, include the capabilities field in the securityContext section of the Container manifest.

apiVersion: v1
kind: Pod
metadata:
name: security-context-demo-3
spec:
containers:
- name: sec-ctx-3
image: gcr.io/google-samples/node-hello:1.0

First, see what happens when you don’t include a capabilities field.

Here is configuration file that does not add or remove any Container capabilities:

kubectl exec -it security-context-demo-3 -- sh

ps aux

#The output shows the process IDs (PIDs) for the Container:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 4336 796 ? Ss 18:17 0:00 /bin/sh -c node server.js
root 5 0.1 0.5 772124 22700 ? Sl 18:17 0:00 node server.js #In your shell, view the status for process 1:
cd /proc/1
cat status #The output shows the capabilities bitmap for the process:
...
CapPrm: 00000000a80425fb
CapEff: 00000000a80425fb
... #Make a note of the capabilities bitmap, and then exit your shell:
exit

  

Next, run a Container that is the same as the preceding container, except that it has additional capabilities set.

Here is the configuration file for a Pod that runs one Container. The configuration adds the CAP_NET_ADMIN and CAP_SYS_TIME capabilities:

apiVersion: v1
kind: Pod
metadata:
name: security-context-demo-4
spec:
containers:
- name: sec-ctx-4
image: gcr.io/google-samples/node-hello:1.0
securityContext:
capabilities:
add: ["NET_ADMIN", "SYS_TIME"]

 

kubectl exec -it security-context-demo-4 -- sh

#In your shell, view the capabilities for process 1:
cd /proc/1
cat status #The output shows capabilities bitmap for the process:
...
CapPrm: 00000000aa0435fb
CapEff: 00000000aa0435fb
... #Compare the capabilities of the two Containers:
00000000a80425fb
00000000aa0435fb

In the capability bitmap of the first container, bits 12 and 25 are clear.

In the second container, bits 12 and 25 are set. Bit 12 is CAP_NET_ADMIN, and bit 25 is CAP_SYS_TIME.

See capability.h for definitions of the capability constants.

Note:

Linux capability constants have the form CAP_XXX.

But when you list capabilities in your Container manifest, you must omit the CAP_ portion of the constant.

For example, to add CAP_SYS_TIME, include SYS_TIME in your list of capabilities.

Assign SELinux labels to a Container

To assign SELinux labels to a Container, include the seLinuxOptions field in the securityContext section of your Pod or Container manifest.

The seLinuxOptions field is an SELinuxOptions object.

Here’s an example that applies an SELinux level:

...
securityContext:
seLinuxOptions:
level: "s0:c123,c456"

  

Note:

To assign SELinux labels, the SELinux security module must be loaded on the host operating system.

The security context for a Pod applies to the Pod’s Containers and also to the Pod’s Volumes when applicable.

Specifically fsGroup and seLinuxOptions are applied to Volumes as follows:

  • fsGroup: Volumes that support ownership management are modified to be owned and writable by the GID specified in fsGroup. See the Ownership Management design document for more details.

  • seLinuxOptions: Volumes that support SELinux labeling are relabeled to be accessible by the label specified under seLinuxOptions. Usually you only need to set the level section. This sets the Multi-Category Security (MCS) label given to all Containers in the Pod as well as the Volumes.

 

kubernetes 实战3_命令_Configure Pods and Containers的更多相关文章

  1. kubernetes 实战4_命令_Configure Pods and Containers

    Configure Service Accounts for Pods A service account provides an identity for processes that run in ...

  2. kubernetes 实战2_命令_Configure Pods and Containers

    --以yaml格式输出:pod\configmap\service\ingress\deployment kubectl get pod platform-financeapi-deployment- ...

  3. kubernetes 实战5_命令_Assign Pods to Nodes&Configure a Pod to Use a ConfigMap

    Assign Pods to Nodes how to assign a Kubernetes Pod to a particular node in a Kubernetes cluster. Ad ...

  4. kubernetes 实战6_命令_Share Process Namespace between Containers in a Pod&Translate a Docker Compose File to Kubernetes Resources

    Share Process Namespace between Containers in a Pod how to configure process namespace sharing for a ...

  5. kubernetes实战(二十八):Kubernetes一键式资源管理平台Ratel安装及使用

    1. Ratel是什么? Ratel是一个Kubernetes资源平台,基于管理Kubernetes的资源开发,可以管理Kubernetes的Deployment.DaemonSet.Stateful ...

  6. Kubernetes实战总结 - 阿里云ECS自建K8S集群

    一.概述 详情参考阿里云说明:https://help.aliyun.com/document_detail/98886.html?spm=a2c4g.11186623.6.1078.323b1c9b ...

  7. kubernetes实战(二十六):kubeadm 安装 高可用 k8s v1.16.x dashboard 2.x

    1.基本配置 基本配置.内核升级.基本服务安装参考https://www.cnblogs.com/dukuan/p/10278637.html,或者参考<再也不踩坑的Kubernetes实战指南 ...

  8. kubernetes实战(二十九):Kubernetes RBAC实现不同用户在不同Namespace的不同权限

    1.基本说明 在生产环境使用k8s以后,大部分应用都实现了高可用,不仅降低了维护成本,也简化了很多应用的部署成本,但是同时也带来了诸多问题.比如开发可能需要查看自己的应用状态.连接信息.日志.执行命令 ...

  9. kubernetes实战(三十):CentOS 8 二进制 高可用 安装 k8s 1.17.x

    1. 基本说明 本文章将演示CentOS 8二进制方式安装高可用k8s 1.17.x,相对于其他版本,二进制安装方式并无太大区别. 2. 基本环境配置 主机信息 192.168.1.19 k8s-ma ...

随机推荐

  1. 【安装虚拟机三】设置Linux IP地址

    环境 VMware 10 CentOS-6.5-x86_64 第一步:查看IP信息linux:ifconfig (windows:ipconfig) 第二步:编辑网卡信息 vi /etc/syscon ...

  2. GO富集分析

    GO的主要用途之一是对基因组进行富集分析.例如,给定一组在特定条件下上调的基因,富集分析将使用该基因组的注释发现哪些GO术语被过度表示(或未充分表示). 富集分析工具    用户可以直接从GOC网站的 ...

  3. 转:C#串口编程

    本文用来简单介绍一下C#串口编程的知识,主要以实例为内容. 凡是串口设备和计算机交互的时候都用到串口,在C#中我们如何来操作串口呢? 大话串口工作原理 实际串口是用来和外部设备进行交换数据的,我抽象出 ...

  4. 区块链3.0 ada Cardano卡尔达诺如何获得一致好评?

    区块链3.0 ada Cardano卡尔达诺如何获得一致好评? EOS 的直接竞争对手是以太坊.文章介绍的卡尔达诺(Cardano)的目标就更加远大了,他要同时锁定比特币和以太坊.但大家去网上搜索卡尔 ...

  5. 运行tomcat报Exception in thread "ContainerBackgroundProcessor[StandardEngine[Catalina]]"

    解决方法1:   手动设置MaxPermSize大小,如果是linux系统,修改TOMCAT_HOME/bin/catalina.sh,如果是windows系统,修改TOMCAT_HOME/bin/c ...

  6. flask框架----flask-session组件

    简介 flask-session是flask框架的session组件,由于原来flask内置session使用签名cookie保存,该组件则将支持session保存到多个地方,如: redis:保存数 ...

  7. MyEclipse 10.7(版本:eclipse 3.7.x-Indigo系列)安装PyDev 4.5.4插件

    解压安装路径结构如截图所示: 安装后重启:

  8. MySQL字符类型datetime与timestamp

    这片博客来详细分区一下这哥俩! 首先来说明这两个字符类型: DATETIME 8 1000-01-01 00:00:00 ~9999~12-31 23:59:59 0000-00-00 00:00:0 ...

  9. python分割txt文件

    a=open('A.txt','r').readlines() n=3 #份数 qty=len(a)//n if len(a)%n==0 else len(a)//n+1 #每一份的行数 for i ...

  10. MySQL半同步安装以及参数

    MySQL半同步安装以及参数 基于MySQL5.5 官档地址: Semisynchronous Replication Administrative Interface https://dev.mys ...