# 常规参数

  • booster
    • gbtree 树模型做为基分类器(默认)
    • gbliner 线性模型做为基分类器
  • silent
    • silent=0时,不输出中间过程(默认)
    • silent=1时,输出中间过程
  • nthread
    • nthread=-1时,使用全部CPU进行并行运算(默认)
    • nthread=1时,使用1个CPU进行运算。
  • scale_pos_weight
    • 正样本的权重,在二分类任务中,当正负样本比例失衡时,设置正样本的权重,模型效果更好。例如,当正负样本比例为1:10时,scale_pos_weight=10。

# 模型参数

  • n_estimatores
    • 含义:总共迭代的次数,即决策树的个数
    • 调参:
  • early_stopping_rounds
    • 含义:在验证集上,当连续n次迭代,分数没有提高后,提前终止训练。
    • 调参:防止overfitting。
  • max_depth
    • 含义:树的深度,默认值为6,典型值3-10。
    • 调参:值越大,越容易过拟合;值越小,越容易欠拟合。
  • min_child_weight
    • 含义:默认值为1,。
    • 调参:值越大,越容易欠拟合;值越小,越容易过拟合(值较大时,避免模型学习到局部的特殊样本)。
  • subsample
    • 含义:训练每棵树时,使用的数据占全部训练集的比例。默认值为1,典型值为0.5-1。
    • 调参:防止overfitting。
  • colsample_bytree
    • 含义:训练每棵树时,使用的特征占全部特征的比例。默认值为1,典型值为0.5-1。
    • 调参:防止overfitting。

# 学习任务参数

  • learning_rate
    • 含义:学习率,控制每次迭代更新权重时的步长,默认0.3。
    • 调参:值越小,训练越慢。
    • 典型值为0.01-0.2。
  • objective 目标函数
    • 回归任务
      • reg:linear (默认)
      • reg:logistic
    • 二分类
      • binary:logistic     概率
      • binary:logitraw   类别
    • 多分类
      • multi:softmax  num_class=n   返回类别
      • multi:softprob   num_class=n  返回概率
    • rank:pairwise
  • eval_metric
    • 回归任务(默认rmse)
      • rmse--均方根误差
      • mae--平均绝对误差
    • 分类任务(默认error)
      • auc--roc曲线下面积
      • error--错误率(二分类)
      • merror--错误率(多分类)
      • logloss--负对数似然函数(二分类)
      • mlogloss--负对数似然函数(多分类)
  • gamma
    • 惩罚项系数,指定节点分裂所需的最小损失函数下降值。
    • 调参:
  • alpha
    • L1正则化系数,默认为1
  • lambda
    • L2正则化系数,默认为1

# 代码主要函数:

  • 载入数据:load_digits()
  • 数据拆分:train_test_split()
  • 建立模型:XGBClassifier()
  • 模型训练:fit()
  • 模型预测:predict()
  • 性能度量:accuracy_score()
  • 特征重要性:plot_importance()
  1 # -*- coding: utf-8 -*-
2 """
3 ###############################################################################
4 # 作者:wanglei5205
5 # 邮箱:wanglei5205@126.com
6 # 代码:http://github.com/wanglei5205
7 # 博客:http://cnblogs.com/wanglei5205
8 # 目的:学习xgboost的XGBClassifier函数
9 # 官方API文档:http://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.training
10 ###############################################################################
11 """
12 ### load module
13 import matplotlib.pyplot as plt
14 from sklearn import datasets
15 from sklearn.model_selection import train_test_split
16 from sklearn.metrics import accuracy_score
17 from xgboost import XGBClassifier
18 from xgboost import plot_importance
19
20 ### load datasets
21 digits = datasets.load_digits()
22
23 ### data analysis
24 print(digits.data.shape)
25 print(digits.target.shape)
26
27 ### data split
28 x_train,x_test,y_train,y_test = train_test_split(digits.data,
29 digits.target,
30 test_size = 0.3,
31 random_state = 33)
32 ### fit model for train data
33 model = XGBClassifier(learning_rate=0.1,
34 n_estimators=1000, # 树的个数--1000棵树建立xgboost
35 max_depth=6, # 树的深度
36 min_child_weight = 1, # 叶子节点最小权重
37 gamma=0., # 惩罚项中叶子结点个数前的参数
38 subsample=0.8, # 随机选择80%样本建立决策树
39 colsample_btree=0.8, # 随机选择80%特征建立决策树
40 objective='multi:softmax', # 指定损失函数
41 scale_pos_weight=1, # 解决样本个数不平衡的问题
42 random_state=27 # 随机数
43 )
44 model.fit(x_train,
45 y_train,
46 eval_set = [(x_test,y_test)],
47 eval_metric = "mlogloss",
48 early_stopping_rounds = 10,
49 verbose = True)
50
51 ### plot feature importance
52 fig,ax = plt.subplots(figsize=(15,15))
53 plot_importance(model,
54 height=0.5,
55 ax=ax,
56 max_num_features=64)
57 plt.show()
58
59 ### make prediction for test data
60 y_pred = model.predict(x_test)
61
62 ### model evaluate
63 accuracy = accuracy_score(y_test,y_pred)
64 print("accuarcy: %.2f%%" % (accuracy*100.0))
65 """
66 95.74%
67 """

【集成学习】sklearn中xgboost模块的XGBClassifier函数的更多相关文章

  1. 【集成学习】sklearn中xgboost模块中plot_importance函数(绘图--特征重要性)

    直接上代码,简单 # -*- coding: utf-8 -*- """ ################################################ ...

  2. sklearn中xgboost模块中plot_importance函数(特征重要性)

    # -*- coding: utf-8 -*- """ ######################################################### ...

  3. 集成学习之Boosting —— XGBoost

    集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boost ...

  4. 【集成学习】sklearn中xgboot模块中fit函数参数详解(fit model for train data)

    参数解释,后续补上. # -*- coding: utf-8 -*- """ ############################################## ...

  5. Lua中的模块与module函数详解

    很快就要开始介绍Lua里的“面向对象”了,在此之前,我们先来了解一下Lua的模块. 1.编写一个简单的模块 Lua的模块是什么东西呢?通常我们可以理解为是一个table,这个table里有一些变量.一 ...

  6. sklearn 中 make_blobs模块

    # 生成用于聚类的各向同性高斯blobsklearn.datasets.make_blobs(n_samples = 100,n_features = 2,center = 3,cluster_std ...

  7. sklearn 中 make_blobs模块使用

    sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10 ...

  8. 学习JQuery中文文档之map()函数和get()函数

    今天学到一个新的函数map(). map(callback) 官方概述: 将一组元素转换成其他数组(不论是否是元素数组) 你可以用这个函数来建立一个列表,不论是值.属性还是CSS样式,或者其他特别形式 ...

  9. 学习JQuery中文文档之get()函数

    前端大神群的群主告诉我们:学习一个框架最好的方法是去把官方文档研究一遍. 现在正式开始我的前端之路,从JQuery的中文文档开始. 基础不牢固,看起来有点慢,但是我会一直坚持下去的.把遇到的问题都记录 ...

随机推荐

  1. Oracle12c版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 12.1.0.1c. Here is a query ...

  2. find中的-exec参数

    1.find中的-exec参数 在当前目录下(包含子目录),查找所有txt文件并找出含有字符串"bin"的行 find ./ -name "*.txt" -ex ...

  3. 事务隔离级别引发的"血案"

    事务引发的"血案"见的多了也麻木了,这回遇到个事务隔离级别的"案子",坑了我小半天的时间...也怪自己细节不牢.. 敲着代码遇到这么一个怪事情: class X ...

  4. MATLAB统计工具箱 转

    D:\Program Files\MATLAB\R2012b\toolbox\stats\stats MATLAB统计工具箱包括概率分布.方差分析.假设检验.分布检验.非参数检验.回归分析.判别分析. ...

  5. js 求select option 的值和对应option的内容

    <select onChange="aa(this)" name="a"> <option value="a">1& ...

  6. how to get ubuntu current default runlevel

    [Purpose]        Learning how to get ubuntu current default  runlevel   [Eevironment]       Ubuntu 1 ...

  7. C#中使用FFMPEG切割、合并视频。

    参考网址:https://blog.csdn.net/samwang_/article/details/70332924 使用前先确保电脑已经安装了FFMPEG,并且配置好环境变量.检测是否安装配置好 ...

  8. 将一个xml文件解析到一个list中

    public List<News> getListFromXml(InputStream in) { XmlPullParser parser = Xml.newPullParser(); ...

  9. 5.9 C++重载转型操作符

    参考:http://www.weixueyuan.net/view/6387.html 注意: 转型构造函数可以将其它类型的参数转换为类类型,如果我们要进行相反的转换过程,将类类型转换为其它数据类型, ...

  10. js正则学习

    一直对正则很纠结也很畏惧,以前感觉花时间理解一个个奇奇怪怪的符号,还不如直接百度谷歌之. 但知其然不知其所以然也是种痛苦,所以花了两天稍微学了一下,虽然没学很深入彻底,但也比之前进步不少,特此笔记. ...