问题背景是这样的,我有一批需要处理的文件,对于每一个文件,都需要调用同一个函数进行处理,相当耗时

有没有加速的办法呢?当然有啦,比如说你将这些文件分成若干批,每一个批次都调用自己写的python脚本进行处理,这样同时运行若干个python程序也可以进行加速

但是,有没有更简单的方法呢?比如说,我一个运行的一个程序里面,同时分为多个线程,然后进行处理?

实际上是有的

大概思路是这样,将这些个文件路径的list,分成若干个,至于分成多少,要看自己cpu核心有多少,比如你的cpu有32核的,理论上就可以加速32倍

直接上代码:

# -*-coding:utf-8-*-
import numpy as np
from glob import glob
import math
import os
import torch
from tqdm import tqdm
import multiprocessing label_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/label.txt'
file_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/distortion_image'
save_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/flow_field' r_d_max = 128
image_index = 0
txt_file = open(label_path)
file_list = txt_file.readlines()
txt_file.close()
file_label = {}
for i in file_list:
i = i.split()
file_label[i[0]] = i[1] r_d_max = 128
eps = 1e-32
H = 256
W = 256 def generate_flow_field(image_list):
for image_file_path in ((image_list)):
pixel_flow = np.zeros(shape=tuple([256, 256, 2])) # 按照pytorch中的grid来写
image_file_name = os.path.basename(image_file_path)
# print(image_file_name)
k = float(file_label[image_file_name])*(-1)*1e-7
# print(k)
r_u_max = r_d_max/(1+k*r_d_max**2) # 计算出畸变校正之后的对角线的理论长度
scale = r_u_max/128 # 将这个长度压缩到256的尺寸,会有一个scale,实际上这里写128*sqrt(2)可能会更加直观
for i_u in range(256):
for j_u in range(256):
x_u = float(i_u - 128)
y_u = float(128 - j_u)
theta = math.atan2(y_u, x_u)
r = math.sqrt(x_u ** 2 + y_u ** 2)
r = r * scale # 实际上得到的r,即没有resize到256×256的图像尺寸size,并且带入公式中
r_d = (1.0 - math.sqrt(1 - 4.0 * k * r ** 2)) / (2 * k * r + eps) # 对应在原图(畸变图)中的r
x_d = int(round(r_d * math.cos(theta)))
y_d = int(round(r_d * math.sin(theta)))
i_d = int(x_d + W / 2.0)
j_d = int(H / 2.0 - y_d)
if i_d < W and i_d >= 0 and j_d < H and j_d >= 0: # 只有求的的畸变点在原图中的时候才进行赋值
value1 = (i_d - 128.0)/128.0
value2 = (j_d - 128.0)/128.0
pixel_flow[j_u, i_u, 0] = value1 # mesh中存储的是对应的r的比值,在进行畸变校正的时候,给定一张这样的图,进行找像素即可
pixel_flow[j_u, i_u, 1] = value2 # 保存成array格式
saved_image_file_path = os.path.join(save_path, image_file_name.split('.')[0] + '.npy')
pixel_flow = pixel_flow.astype('f2') # 将数据的格式转换成float16类型, 节省空间
# print(saved_image_file_path)
# print(pixel_flow)
np.save(saved_image_file_path, pixel_flow)
return if __name__ == '__main__':
file_list = glob(file_path + '/*.JPEG')
m = 32
n = int(math.ceil(len(file_list) / float(m))) # 向上取整
result = []
pool = multiprocessing.Pool(processes=m) # 32进程
for i in range(0, len(file_list), n):
result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],)))
pool.close()
pool.join()

在上面的代码中,我的函数

generate_flow_field(image_list)

需要传入一个list,然后对于这个list进行操作,之后对操作的结果进行保存

所以,只需要将你需要处理的多个文件,切分成尽量等大小的list,然后再对每一个list,开一个线程进行处理即可

看我上面的主函数

if __name__ == '__main__':
file_list = glob(file_path + '/*.JPEG') # 将文件夹下所有的JPEG文件列成一个list
m = 32 # 假设CPU有32个核心
n = int(math.ceil(len(file_list) / float(m))) # 每一个核心需要处理的list的数目
result = []
pool = multiprocessing.Pool(processes=m) # 开32线程的线程池
for i in range(0, len(file_list), n):
result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 对每一个list都用上面我们定义的函数进行处理
pool.close() # 处理结束之后,关闭线程池
pool.join()

主要是这样的两行代码,一行是

pool = multiprocessing.Pool(processes=m)  # 开32线程的线程池

用来开辟线程池

另外一行是

result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],)))  # 对每一个list都用上面我们定义的函数进行处理

对于线程池,用apply_async()同时跑generate_flow_field这个函数,传入的参数是:file_list[i: i+n]

实际上apply_async()这个函数的作用是所有的线程同时跑,速度是比较快的

怎么样,讲到这里,是不是学会如何使用pool.apply_async()来进行多线程加速了呢?

python中调用多线程加速处理文件的更多相关文章

  1. Python之FTP多线程下载文件之分块多线程文件合并

    Python之FTP多线程下载文件之分块多线程文件合并 欢迎大家阅读Python之FTP多线程下载系列之二:Python之FTP多线程下载文件之分块多线程文件合并,本系列的第一篇:Python之FTP ...

  2. Python之FTP多线程下载文件之多线程分块下载文件

    Python之FTP多线程下载文件之多线程分块下载文件 Python中的ftplib模块用于对FTP的相关操作,常见的如下载,上传等.使用python从FTP下载较大的文件时,往往比较耗时,如何提高从 ...

  3. Django之在Python中调用Django环境

    Django之在Python中调用Django环境 新建一个py文件,在其中写下如下代码: import os if __name__ == '__main__': os.environ.setdef ...

  4. (转)python中调用R语言通过rpy2 进行交互安装配置详解

    python中调用R语言通过rpy2 进行交互安装配置详解(R_USER.R_HOME配置) 2018年11月08日 10:00:11 luqin_ 阅读数:753   python中调用R语言通过r ...

  5. 如何在python中调用C语言代码

    1.使用C扩展CPython还为开发者实现了一个有趣的特性,使用Python可以轻松调用C代码 开发者有三种方法可以在自己的Python代码中来调用C编写的函数-ctypes,SWIG,Python/ ...

  6. Python中基本的读文件和简单数据处理

    Python中基本的读文件和简单数据处理 暂无评论 DataQuest上面的免费课程(本文是Python基础课程部分),里面有些很基础的东西(csv文件读,字符串预处理等),发在这里做记录.涉及下面六 ...

  7. Python中的多线程编程,线程安全与锁(二)

    在我的上篇博文Python中的多线程编程,线程安全与锁(一)中,我们熟悉了多线程编程与线程安全相关重要概念, Threading.Lock实现互斥锁的简单示例,两种死锁(迭代死锁和互相等待死锁)情况及 ...

  8. [Python-MATLAB] 在Python中调用MATLAB的API

    可以参考官方的说明文档: http://cn.mathworks.com/help/matlab/matlab_external/get-started-with-matlab-engine-for- ...

  9. python中的多线程和多进程

    一.简单理解一下线程和进程 一个进程中可有多个线程,线程之间可共享内存,进程间却是相互独立的.打比方就是,进程是火车,线程是火车厢,车厢内人员可以流动(数据共享) 二.python中的多线程和多进程 ...

随机推荐

  1. Oracle11g版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 11g. Here is a query to se ...

  2. ActiveMQ topic 普通订阅和持久订阅

    直观的结果:当生产者向 topic 发送消息, 1. 若不存在持久订阅者和在线的普通订阅者,这个消息不会保存,当普通订阅者上线后,它是收不到消息的. 2. 若存在离线的持久订阅者,broker 会为该 ...

  3. scratch如何获取透明的图片

    scratch中,每个对象都有一个造型,这个造型可以是载入外部的图片,但是外部图片很多是有背景的,放入scratch舞台区,有背景,很是不爽.用wps2016的ppt演示, 把文本框等另存为图片,图片 ...

  4. WPF 之 TreeView节点重命名

    下面的TreeView节点是通过数据双向绑定的方式,绑定到TextBlock控件和TextBox控件的Text属性上,并且让两者绑定相同的属性,同时使TextBox控件刚好完全覆盖TextBlock控 ...

  5. jenkins使用jacoco插件检测代码覆盖率(八)

    代码覆盖率:类覆盖,方法覆盖,行覆盖,指令覆盖……(简而言之,就是判断有没有被执行) 覆盖率 = 已经执行的代码 / 总代码 (1)创建maven项目,配置pom.xml如下 pom.xml < ...

  6. ADO.NET 连接池 Session 状态分析

    ADO.NET 中提供连接池避免 在业务操作中频繁打开,关闭连接. 当客户端释放连接后,连接池并未真正将数据库连接资源释放 , 而是根据连接字符串特征,将资源放到连接池中, 方便下次重用. 因此问题来 ...

  7. [Leetcode 62]机器人走路Unique Path 动态规划

    [题目] A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below) ...

  8. 从SharePoint 2013迁移到SharePoint Online - 评估工具

    博客地址:http://blog.csdn.net/FoxDave 今天想跟大家分享一款从SharePoint 2013迁移到SharePoint Online时的评估工具:SharePoint ...

  9. shelly - HYMN TO INTELLECTUAL BEAUTY

    HYMN TO INTELLECTUAL BEAUTY III No voice from some sublimer world hath ever ⁠To sage or poet these r ...

  10. Arduino-汉王PM2.5检测模组B1

    汉王PM2.5检测模组B1,接入Arduino,使用I2C1602显示屏显示 #include <Arduino.h> #include <Wire.h> #include & ...