上篇继续,这次来演示下如何做动画,以及加载图片

一、动画图

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation fig, ax = plt.subplots() x = np.arange(0, 2 * np.pi, 0.01)
line, = ax.plot(x, np.sin(x)) def init():
line.set_ydata([np.nan] * len(x)) # Y轴值归0,Mac上加不加这句,都一样
return line, def animate(i):
line.set_ydata(np.sin(x + i / 100)) # update the data.
return line, ani = animation.FuncAnimation(
# blit在Mac上只能设置False,否则动画有残影
fig, animate, init_func=init, interval=2, blit=False, save_count=50) init() plt.show()

  

基本套路是:init()函数中给定图象的初始状态,然后animate()函数中每次对函数图象动态调整一点点,最后用FuncAnimation把它们串起来。

再来看一个官网给的比较好玩的示例:

from numpy import sin, cos
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate
import matplotlib.animation as animation G = 9.8 # acceleration due to gravity, in m/s^2
L1 = 1.0 # length of pendulum 1 in m
L2 = 1.0 # length of pendulum 2 in m
M1 = 1.0 # mass of pendulum 1 in kg
M2 = 1.0 # mass of pendulum 2 in kg def derivs(state, t):
dydx = np.zeros_like(state)
dydx[0] = state[1] del_ = state[2] - state[0]
den1 = (M1 + M2) * L1 - M2 * L1 * cos(del_) * cos(del_)
dydx[1] = (M2 * L1 * state[1] * state[1] * sin(del_) * cos(del_) +
M2 * G * sin(state[2]) * cos(del_) +
M2 * L2 * state[3] * state[3] * sin(del_) -
(M1 + M2) * G * sin(state[0])) / den1 dydx[2] = state[3] den2 = (L2 / L1) * den1
dydx[3] = (-M2 * L2 * state[3] * state[3] * sin(del_) * cos(del_) +
(M1 + M2) * G * sin(state[0]) * cos(del_) -
(M1 + M2) * L1 * state[1] * state[1] * sin(del_) -
(M1 + M2) * G * sin(state[2])) / den2 return dydx # create a time array from 0..100 sampled at 0.05 second steps
dt = 0.05
t = np.arange(0.0, 20, dt) # th1 and th2 are the initial angles (degrees)
# w10 and w20 are the initial angular velocities (degrees per second)
th1 = 120.0
w1 = 0.0
th2 = -10.0
w2 = 0.0 # initial state
state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate.
y = integrate.odeint(derivs, state, t) x1 = L1 * sin(y[:, 0])
y1 = -L1 * cos(y[:, 0]) x2 = L2 * sin(y[:, 2]) + x1
y2 = -L2 * cos(y[:, 2]) + y1 fig = plt.figure()
ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2))
ax.set_aspect('equal')
ax.grid() line, = ax.plot([], [], 'o-', lw=2)
time_template = 'time = %.1fs'
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def init():
line.set_data([], [])
time_text.set_text('')
return line, time_text def animate(i):
thisx = [0, x1[i], x2[i]]
thisy = [0, y1[i], y2[i]] line.set_data(thisx, thisy)
time_text.set_text(time_template % (i * dt))
return line, time_text ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)),
interval=25, blit=False, init_func=init) plt.show()

  

甚至还可以创建一些艺术气息的动画:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation # Fixing random state for reproducibility
np.random.seed(19680801) # Create new Figure and an Axes which fills it.
fig = plt.figure(figsize=(5, 5))
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
ax.set_xlim(0, 1), ax.set_xticks([])
ax.set_ylim(0, 1), ax.set_yticks([]) # Create rain data
n_drops = 50
rain_drops = np.zeros(n_drops, dtype=[('position', float, 2),
('size', float, 1),
('growth', float, 1),
('color', float, 4)]) # Initialize the raindrops in random positions and with
# random growth rates.
rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))
rain_drops['growth'] = np.random.uniform(50, 200, n_drops) # Construct the scatter which we will update during animation
# as the raindrops develop.
scat = ax.scatter(rain_drops['position'][:, 0], rain_drops['position'][:, 1],
s=rain_drops['size'], lw=0.3, edgecolors=rain_drops['color'],
facecolors='none') def update(frame_number):
# Get an index which we can use to re-spawn the oldest raindrop.
current_index = frame_number % n_drops # Make all colors more transparent as time progresses.
rain_drops['color'][:, 3] -= 1.0/len(rain_drops)
rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0, 1) # Make all circles bigger.
rain_drops['size'] += rain_drops['growth'] # Pick a new position for oldest rain drop, resetting its size,
# color and growth factor.
rain_drops['position'][current_index] = np.random.uniform(0, 1, 2)
rain_drops['size'][current_index] = 5
rain_drops['color'][current_index] = (0, 0, 0, 1)
rain_drops['growth'][current_index] = np.random.uniform(50, 200) # Update the scatter collection, with the new colors, sizes and positions.
scat.set_edgecolors(rain_drops['color'])
scat.set_sizes(rain_drops['size'])
scat.set_offsets(rain_drops['position']) # Construct the animation, using the update function as the animation director.
animation = FuncAnimation(fig, update, interval=10)
plt.show()

  

二、加载图片

import matplotlib.pyplot as plt
import matplotlib.image as mpimg img = mpimg.imread('cat.png') # 随便从网上捞的一张图片,保存到当前目录下
lum_img = img[:, :, 0] # plt.figure()
plt.subplot(331)
plt.imshow(img) plt.subplot(332)
plt.imshow(lum_img) plt.subplot(333)
plt.imshow(lum_img, cmap="spring") plt.subplot(334)
plt.imshow(lum_img, cmap="summer") plt.subplot(335)
plt.imshow(lum_img, cmap="autumn") plt.subplot(336)
plt.imshow(lum_img, cmap="winter") plt.subplot(337)
plt.imshow(lum_img, cmap="hot") plt.subplot(338)
plt.imshow(lum_img, cmap="cool") plt.subplot(339)
plt.imshow(lum_img, cmap="bone") plt.show()

Matplotlib新手上路(下)的更多相关文章

  1. Matplotlib新手上路(中)

    接上回继续 一.多张图布局(subplot) 1.1 subplot布局方式 import matplotlib.pyplot as plt plt.figure() plt.subplot(3, 2 ...

  2. Matplotlib新手上路(上)

    matplotlib是python里用于绘图的专用包,功能十分强大.下面介绍一些最基本的用法: 一.最基本的划线 先来一个简单的示例,代码如下,已经加了注释: import matplotlib.py ...

  3. php大力力 [001节]2015-08-21.php在百度文库的几个基础教程新手上路日记 大力力php 大力同学 2015-08-21 15:28

    php大力力 [001节]2015-08-21.php在百度文库的几个基础教程新手上路日记 大力力php 大力同学 2015-08-21 15:28 话说,嗯嗯,就是我自己说,做事认真要用表格,学习技 ...

  4. OpenGL教程之新手上路

    Jeff Molofee(NeHe)的OpenGL教程- 新手上路 译者的话:NeHe的教程一共同拥有30多课,内容翔实,而且不断更新 .国内的站点实在应该向他们学习.令人吃惊的是,NeHe提供的例程 ...

  5. webpack4配置详解之新手上路初探

    前言 经常会有群友问起webpack.react.redux.甚至create-react-app配置等等方面的问题,有些是我也不懂的,慢慢从大家的相互交流中,也学到了不少. ​ 今天就尝试着一起来聊 ...

  6. 转-spring-boot 注解配置mybatis+druid(新手上路)-http://blog.csdn.net/sinat_36203615/article/details/53759935

    spring-boot 注解配置mybatis+druid(新手上路) 转载 2016年12月20日 10:17:17 标签: sprinb-boot / mybatis / druid 10475 ...

  7. Ocelot 新手上路

    新手上路,老司机请多多包含!Ocelot 在博园里文章特别多,但是按照其中一篇文章教程,如果经验很少或者小白,是没法将程序跑向博主的结果. 因此总结下     参考多篇文章,终于达到预期效果. Oce ...

  8. 新手上路——it人如何保持竞争力

    新手上路——如何保持竞争力 JINGZHENGLI 套用葛大爷的一句名言:21世纪什么最贵,人才.哪你是人才还是人材?还是人财或人裁?相信大家都不是最后一种.何如保持住这个光环呢?就需要我们保持我们独 ...

  9. Dart语言快速学习上手(新手上路)

    Dart语言快速学习上手(新手上路) // 声明返回值 int add(int a, int b) { return a + b; } // 不声明返回值 add2(int a, int b) { r ...

随机推荐

  1. java.util.Map

    map时key/value形式存储信息的,键可以为对象null public static void main(String[] args) { Map<String, String> m ...

  2. ThinkPHP中where()使用方法详解

    where方法的用法是ThinkPHP查询语言的精髓,也是ThinkPHP ORM的重要组成部分和亮点所在,可以完成包括普通查询.表达式查询.快捷查询.区间查询.组合查询在内的查询操作.where方法 ...

  3. java 知识体系

    java分成J2ME(移动应用开发),J2SE(桌面应用开发),J2EE(Web企业级应用),所以java并不是单机版的,只是面向对象语言.建议如果学习java体系的话可以这样去学习: *第一阶段:J ...

  4. poj 1751 输出MST中新加入的边

    给出结点的坐标 以及已建好的边 要输出MST中加入的边(已建好的边就不用输出了)结点的编号从1开始注意这题只有一组数据 不能用多组输入 否则就超时(在这被坑惨了Orz) Sample Input 91 ...

  5. PHP浮点数的精确计算BCMath

    Php: BCMath bc是Binary Calculator的缩写.bc*函数的参数都是操作数加上一个可选的 [int scale],比如string bcadd(string $left_ope ...

  6. 【BZOJ4927】第一题 双指针+DP

    题解: 虽然是过了,不过做的十分智障 首先是有 2根 2 1 1 , 3根 1 1 1 这两种方法 然后考虑2 2 1 1 two-point-two没啥好说的 3 1 1 1 我很智障的以为数据范围 ...

  7. zjoi2010基站选址

    线段树优化dp 题解: 首先dp挺简单的 f[i,k]=f[j,k-1]+solve(i+1,j-1) 然后这个是可以n^2*k搞得 然后考虑这个solve(i+1,j-1) 当i延伸了一个位置的时候 ...

  8. 【NPM】npm ERR! Unexpected end of JSON input while parsing near '...",'解决方案

    问题描述 今天安装项目依赖npm install 的时候出现错误: npm ERR! Unexpected end of JSON input while parsing near '...e&quo ...

  9. Topic路由模式

    原本理解的不够彻底,程序总是不太对.所以查询了资料,关于这种模式的意思做了仔细的解读,复制的文字. 一:介绍 1.模式 2.知识点 其中,#可以匹配一个或者多个字符 其中,*可以匹配一个字符 3.仔细 ...

  10. Ubuntu 之 atom 安装以及 常用配置

    安装方式如下: 打开终端,使用以下命令安装: sudo add-apt-repository ppa:webupd8team/atom sudo apt-get update sudo apt-get ...