前言

我对差分约束有我个人独特的看法,写这题解既是与大家分享,又算作我对差分约束系统的总结。

浅谈差分约束

对于一些给出形如\(x_i-x_j\leq a\)不等式(差分约束)组,求\(x_t-x_s\)的最大值问题,我们考虑把这些式子移项,变成\(x_i\leq x_j+a\)的形式。我们知道该问题存在解则所有的不等式都应该得到满足。而所有的\(x_i\leq x_j+a\)都得到满足的要求正好与最短路算法中最终结果算出来后的性质\(dis_i\leq dis_j+w_{i,j}\)类似,所以联想到可以用最短路来求解该方程组问题,即把\(\{x_n\}\)当做\(V\),对每个不等式建边\((j,i,a)\),设\(x_s=0\),跑最短路后,\(x_t\)即为最大值(因为xs=0了)。下证方法的正确性,先假设问题有解。

  1. 必要性 算出最短路后根据最短路的性质那么所有的不等式都应该被满足,说明答案是正确的。
  2. 充分性 根据最短路算法的过程\(x_i\)都被它的限制牢牢控制住,且有一个最严格的限制使得\(x_i\)恰好满足它,那么不可能存在比最短路结果更优的解,说明答案是最优的。

综上,算法正确。(谁看出了问题请联系我。)

无解的情况为图中有负环,对应到原问题中就是一个数比它自己大(小)。

分析此题

每个要求就是个差分约束,然后移项令路权为正,发现都是形如\(b\geq a+1\)的形式,与最长路的结果性质类似,故建立最长路模型,用Bellman-Ford(或者LPFA)求解。对小朋友的要求建模:

  1. a比b多:\(a>b \rightarrow a\geq b+1\)
  2. a不少于b:\(a \geq b \rightarrow a \geq b+0\)
  3. a跟b一样:\(a = b \rightarrow a \geq b+0 \& b \geq a+0\)

其余的都是对偶情况。考虑\(x_i>0 \rightarrow x_i\geq x_0+1\)用0节点向1-n连权为1的边,表示每个小朋友都要分到糖,将dis[0]设为0,这样对0节点的差分就是每个小朋友应得的点数。

然后注意无解的情况,最长路无解即有正环。另外输入的时候特判一下约束是否是“a大于a自己”这种类型的,直接输出-1,可以提高程序效率。

代码

#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<algorithm>
#define rg register
#pragma GCC optimize ("O0")
using namespace std;
typedef long long ll;
const int INF=0x7fffffff;
template<class T> inline T read(T&x){
    T data=0;
    int w=1;
    char ch=getchar();
    while(ch!='-'&&!isdigit(ch))
        ch=getchar();
    if(ch=='-')
        w=-1,ch=getchar();
    while(isdigit(ch))
        data=10*data+ch-'0',ch=getchar();
    return x=data*w;
}

const int MAXN=1e5+7;
int n,m;

struct Edge
{
    int to,nx,w;
}E[MAXN*3]; // 0连边还要O(n)空间
int head[MAXN],ecnt;

inline void addedge(int x,int y,int w)
{
    E[++ecnt].to=y,E[ecnt].w=w;
    E[ecnt].nx=head[x],head[x]=ecnt;
}

int num[MAXN],dis[MAXN];
bool inq[MAXN];
queue<int>Q;

inline bool SPFA()
{
    memset(dis,-1,sizeof(dis));
    dis[0]=0;
    Q.push(0);
    inq[0]=1;
    num[0]=1;
    while(!Q.empty())
    {
        int x=Q.front();
        Q.pop();
        inq[x]=0;
        for(rg int i=head[x];i;i=E[i].nx)
        {
            int y=E[i].to;
            if(dis[y]<dis[x]+E[i].w)
            {
                dis[y]=dis[x]+E[i].w;
                if(!inq[y])
                {
                    if(++num[y]>=n) // 一个点最多被松弛n-1次,入队n-1次
                        return 0;
                    Q.push(y);
                    inq[y]=1;
                }
            }
        }
    }
    return 1;
}

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    read(n);read(m);
    for(rg int i=1;i<=m;++i)
    {
        int x,a,b;
        read(x);read(a);read(b);
        if(x==1)
        {
            addedge(a,b,0);
            addedge(b,a,0);
        }
        else if(x==2)
        {
            if(a==b)
            {
                printf("-1");
                return 0;
            }
            addedge(a,b,1);
        }
        else if(x==3)
        {
            addedge(b,a,0);
        }
        else if(x==4)
        {
            if(a==b)
            {
                printf("-1");
                return 0;
            }
            addedge(b,a,1);
        }
        else if(x==5)
        {
            addedge(a,b,0);
        }
    }
    for(rg int i=n;i>=1;--i)
        addedge(0,i,1);
//  cerr<<"build end"<<endl;
    if(!SPFA())
        printf("-1");
    else
    {
        ll ans=0;
        for(rg int i=1;i<=n;++i)
            ans+=dis[i];
        printf("%lld",ans);
    }
//  fclose(stdin);
//  fclose(stdout);
    return 0;
}

Hint

ans要开long long,0节点向1-n连边要逆序,因为根据讨论

这个题原数据有一个点是一个十万的链

可以卡掉SPFA。

LG3275 【[SCOI2011]糖果】的更多相关文章

  1. bzoj2330: [SCOI2011]糖果

    2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友 ...

  2. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  3. bzoj 2330 [SCOI2011]糖果(差分约束系统)

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3574  Solved: 1077[Submit][Status ...

  4. BZOJ 2330: [SCOI2011]糖果( 差分约束 )

    坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...

  5. [luogu P3275] [SCOI2011]糖果

    [luogu P3275] [SCOI2011]糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些 ...

  6. P3275 [SCOI2011]糖果 && 差分约束(二)

    学习完了差分约束是否有解, 现在我们学习求解最大解和最小解 首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系. 即: 最后的最短路蕴含了所有元素之间 ...

  7. [Luogu 3275] SCOI2011 糖果

    [Luogu 3275] SCOI2011 糖果 第一道差分约束.感谢 AZe. 我的理解是根据一些不等关系建一个图,在图上边跑一个最长路(有时候是最短路). 因为可能存在负环,所以必须用 SPFA! ...

  8. BZOJ 2330 SCOI2011糖果 差分约束

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2819  Solved: 820 题目连接 http://www ...

  9. BZOJ2330 SCOI2011 糖果 【差分约束】

    BZOJ2330 SCOI2011 糖果 Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一 ...

  10. 【bzoj2330】: [SCOI2011]糖果 图论-差分约束-SPFA

    [bzoj2330]: [SCOI2011]糖果 恩..就是裸的差分约束.. x=1 -> (A,B,0) (B,A,0) x=2 -> (A,B,1)  [这个情况加个A==B无解的要特 ...

随机推荐

  1. TensorFlow学习笔记——节点(constant、placeholder、Variable)

    一. constant(常量) constant是TensorFlow的常量节点,通过constant方法创建,其是计算图(Computational Graph)中的起始节点,是传入数据. 创建方式 ...

  2. :适配器模式:Adapter

    #ifndef __ADAPTER_H__ #define __ADAPTER_H__ #include <iostream> using namespace std; class Duc ...

  3. 6.5C++查找字符串

    参考:http://www.weixueyuan.net/view/6394.html 总结: find函数可以在字符串中查找子字符串中出现的位置.该函数有两个参数,第一个参数是待查找的子字符串,第二 ...

  4. 7 Serial Configuration 理解 (一)

    reference :  ug470- 7 series config.pdf 7系列器件有5种配置接口,每种配置接口对应一种或者多种配置模式和总线位宽.配置时序相对于引脚的CCLK,即使在内部产生C ...

  5. centos7部署kubernetes

    参考:https://www.cnblogs.com/zhenyuyaodidiao/p/6500830.html 1.环境介绍及准备: 1.1 物理机操作系统 物理机操作系统采用Centos7.3 ...

  6. centos tar 常用

    tar命令详解 -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用 ...

  7. oracle插入数据问题

    这个是我的表结构:desc T_STUDENT;Name         Type         Nullable Default Comments ------------ ----------- ...

  8. 9.Python爬虫利器一之Requests库的用法(一)

    requests 官方文档: http://cn.python-requests.org/zh_CN/latest/user/quickstart.html request 是一个第三方的HTTP库 ...

  9. python day02 作业答案

    1. (1).false   (2).false 2. (1).8  (2).4 3. (1).6  (2).3  (3).false (4).3   (5).true   (6).true  (7) ...

  10. Jsoup的学习

    一 . 什么是jsoup jsoup 是一款Java 的HTML解析器,可直接解析某个URL地址.HTML文本内容.它提供了一套非常省力的API,可通过DOM,CSS以及类似于jQuery的操作方法来 ...