第三十二课 linux内核链表剖析
__builtin_prefetch是gcc扩展的,用来提高访问效率,需要硬件的支持。
在标准C语言中是不允许static inline联合使用的。
删除依赖的头文件,将相应的结构拷贝到LinuxList.h中:
此外,需要将container_of改写成我们自己的形式。
#define container_of(ptr, type, member) ((type *)((char *)ptr - offsetof(type,member)))
移植后的内核链表如下:
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H // #include <linux/types.h>
// #include <linux/stddef.h>
// #include <linux/poison.h>
// #include <linux/prefetch.h> #ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif #ifndef container_of
#define container_of(ptr, type, member) ((type *)((char *)ptr - offsetof(type,member)))
#endif #define prefetch(x) ((void)x) #define LIST_POISON1 (NULL)
#define LIST_POISON2 (NULL) struct list_head {
struct list_head *next, *prev;
}; struct hlist_head {
struct hlist_node *first;
}; struct hlist_node {
struct hlist_node *next, **pprev;
}; /*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/ #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name) static void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
} /*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next);
#endif /**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
} /**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
} /*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
} /**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
} static void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif /**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
} static void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
} /**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
} /**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
} /**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
} /**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
} /**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static int list_empty(const struct list_head *head)
{
return head->next == head;
} /**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
} /**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static void list_rotate_left(struct list_head *head)
{
struct list_head *first; if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
} /**
* list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
} static void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
} /**
* list_cut_position - cut a list into two
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
* and if so we won't cut the list
*
* This helper moves the initial part of @head, up to and
* including @entry, from @head to @list. You should
* pass on @entry an element you know is on @head. @list
* should be an empty list or a list you do not care about
* losing its data.
*
*/
static void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
} static void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev; first->prev = prev;
prev->next = first; last->next = next;
next->prev = last;
} /**
* list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
} /**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
} /**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
} /**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
} /**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member) /**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member) /**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next) /**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* This variant differs from list_for_each() in that it's the
* simplest possible list iteration code, no prefetching is done.
* Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next) /**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
pos = pos->prev) /**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next) /**
* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
prefetch(pos->prev), pos != (head); \
pos = n, n = pos->prev) /**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member)) /**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member)) /**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member)) /**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member)) /**
* list_for_each_entry_continue_reverse - iterate backwards from the given point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Start to iterate over list of given type backwards, continuing after
* the current position.
*/
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member)) /**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; prefetch(pos->member.next), &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member)) /**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member)) /**
* list_for_each_entry_safe_continue - continue list iteration safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member)) /**
* list_for_each_entry_safe_from - iterate over list from current point safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member)) /**
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member)) /**
* list_safe_reset_next - reset a stale list_for_each_entry_safe loop
* @pos: the loop cursor used in the list_for_each_entry_safe loop
* @n: temporary storage used in list_for_each_entry_safe
* @member: the name of the list_struct within the struct.
*
* list_safe_reset_next is not safe to use in general if the list may be
* modified concurrently (eg. the lock is dropped in the loop body). An
* exception to this is if the cursor element (pos) is pinned in the list,
* and list_safe_reset_next is called after re-taking the lock and before
* completing the current iteration of the loop body.
*/
#define list_safe_reset_next(pos, n, member) \
n = list_entry(pos->member.next, typeof(*pos), member) /*
* Double linked lists with a single pointer list head.
* Mostly useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access the tail in O(1).
*/ #define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
} static int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
} static int hlist_empty(const struct hlist_head *h)
{
return !h->first;
} static void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
} static void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
} static void hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
} static void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
} /* next must be != NULL */
static void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
} static void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next; if(next->next)
next->next->pprev = &next->next;
} /* after that we'll appear to be on some hlist and hlist_del will work */
static void hlist_add_fake(struct hlist_node *n)
{
n->pprev = &n->next;
} /*
* Move a list from one list head to another. Fixup the pprev
* reference of the first entry if it exists.
*/
static void hlist_move_list(struct hlist_head *old,
struct hlist_head *new)
{
new->first = old->first;
if (new->first)
new->first->pprev = &new->first;
old->first = NULL;
} #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \
for (pos = (head)->first; pos && ({ prefetch(pos->next); ; }); \
pos = pos->next) #define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; ; }); \
pos = n) /**
* hlist_for_each_entry - iterate over list of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
pos && ({ prefetch(pos->next); ;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = pos->next) /**
* hlist_for_each_entry_continue - iterate over a hlist continuing after current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
pos && ({ prefetch(pos->next); ;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = pos->next) /**
* hlist_for_each_entry_from - iterate over a hlist continuing from current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos && ({ prefetch(pos->next); ;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = pos->next) /**
* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @n: another &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
for (pos = (head)->first; \
pos && ({ n = pos->next; ; }) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); ;}); \
pos = n) #endif
这个文件在linux内核中是list.h文件。
数据由使用链表的人来定义。
上图中的l为头结点,类型转换后list指向了l中的head。
INIT_LIST_HEAD在初始化头结点的时候让自己形成了双向循环链表。
list_add图解:
删除操作图解:
遍历就是一个for循环,prefetch是gcc内置的宏,为了提高效率,移植之后,我们用不到。
测试程序如下:
#include <stdio.h>
#include "LinuxList.h" void list_demo_1()
{
struct Node
{
struct list_head head;
int value;
}; struct Node l = {};
struct list_head* list = (struct list_head*)&l;
struct list_head* slider = NULL;
int i = ; INIT_LIST_HEAD(list); printf("Insert begin ...\n"); for(i=; i<; i++)
{
struct Node* n = (struct Node*)malloc(sizeof(struct Node)); n->value = i; list_add_tail((struct list_head*)n, list);
} list_for_each(slider, list)
{
printf("%d\n", ((struct Node*)slider)->value);
} printf("Insert end ...\n"); printf("Delete begin ...\n"); list_for_each(slider, list)
{
if( ((struct Node*)slider)->value == )
{
list_del(slider);
free(slider);
break;
}
} list_for_each(slider, list)
{
printf("%d\n", ((struct Node*)slider)->value);
} printf("Delete end ...\n");
} int main()
{
list_demo_1(); return ;
}
结果如下:
上面的程序中链表结构在我们的结构的开头处,所以类似于32行的强制类型转换可以直接用,这是没有问题的,但是如果我们的自定义数据在开头处呢,这就不能用强制类型转换了。
示例:
#include <stdio.h>
#include "LinuxList.h" void list_demo_1()
{
struct Node
{
struct list_head head;
int value;
}; struct Node l = {};
struct list_head* list = (struct list_head*)&l;
struct list_head* slider = NULL;
int i = ; INIT_LIST_HEAD(list); printf("Insert begin ...\n"); for(i=; i<; i++)
{
struct Node* n = (struct Node*)malloc(sizeof(struct Node)); n->value = i; list_add_tail((struct list_head*)n, list);
} list_for_each(slider, list)
{
printf("%d\n", ((struct Node*)slider)->value);
} printf("Insert end ...\n"); printf("Delete begin ...\n"); list_for_each(slider, list)
{
if( ((struct Node*)slider)->value == )
{
list_del(slider);
free(slider);
break;
}
} list_for_each(slider, list)
{
printf("%d\n", ((struct Node*)slider)->value);
} printf("Delete end ...\n");
} void list_demo_2()
{
struct Node
{
int value;
struct list_head head;
}; struct Node l = {};
struct list_head* list = &l.head;
struct list_head* slider = NULL;
int i = ; INIT_LIST_HEAD(list); printf("Insert begin ...\n"); for(i=; i<; i++)
{
struct Node* n = (struct Node*)malloc(sizeof(struct Node)); n->value = i; list_add(&n->head, list);
} list_for_each(slider, list)
{
printf("%d\n", list_entry(slider, struct Node, head)->value);
} printf("Insert end ...\n"); printf("Delete begin ...\n"); list_for_each(slider, list)
{
struct Node* n = list_entry(slider, struct Node, head); if( n->value == )
{
list_del(slider);
free(n);
break;
}
} list_for_each(slider, list)
{
printf("%d\n", list_entry(slider, struct Node, head)->value);
} printf("Delete end ...\n");
} int main()
{
list_demo_1(); list_demo_2(); return ;
}
在demo2中,我们没有用强制类型转换(这时也不能使用强制类型转换),而是使用了list_entry,这个宏内部使用了container_of。使用list_entry之后就能得到我们自定义的节点的指针了。
运行结果如下:
小结:
第三十二课 linux内核链表剖析的更多相关文章
- 第32课 Linux内核链表剖析
1. Linux内核链表的位置及依赖 (1)位置:{linux-2.6.39}\\include\linux\list.h (2)依赖 ①#include<linux\types.h> ② ...
- NeHe OpenGL教程 第三十二课:拾取游戏
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- linux内核链表剖析
1.移植linux内核链表,使其适用于非GNU编译器 2.分析linux内核中链表的基本实现 移植时的注意事项 清除文件间的依赖 剥离依赖文件中与链表实现相关的代码 清除平台相关的代码(GNU C) ...
- 第三十二章 Linux常规练习题(一)
一.练习题一 1.超级用户(管理员用户)提示符是____,普通用户提示符是____.2.linux关机重启的命令有哪些 ?3.bash是什么?4.bash特性, 常见的bash特性有哪些?5.网卡的配 ...
- 第三十二课:JSDeferred的性能提速
大家如果看了前面两课,就知道Deferred的静态方法next(next_default)是用setTimeout实现的(有浏览器最小时钟间隔).但是实现这种异步操作,可以有很多种方法.JSDefer ...
- 三十二、Linux 进程与信号——不可靠信号
32.1 不可靠信号问题 发生信号时关联动作被重置为默认设置 信号可能丢失 程序片段 在进入 sig_int 与再次调用 signal 之间发生的 SIGINT 信号将不会捕获 导致进程终止 以前版本 ...
- python第三十二课——队列
队列:满足特点 --> 先进先出,类似于我们生活中的买票.安检 [注意] 对于队列而言:python中有为其封装特定的函数,在collections模块中的deque函数就可以获取一个队列对象; ...
- 潭州课堂25班:Ph201805201 django 项目 第三十二课 后台站点管理(课堂笔记)
一.后台站点模版抽取 1.获取静态站点模版 可以使用git clone到本地 git clone https://github.com/almasaeed2010/AdminLTE.git 也可以在g ...
- python第三十二课——栈
栈:满足特点 --> 先进后出,类似于我们生活中的子弹夹 [注意] 对于栈结构而言:python中没有为其封装特定的函数,我们可以使用list(列表)来模拟栈的特点 使用list对象来模拟栈结构 ...
随机推荐
- 使用IntelliJ IDEA 配置Maven(转)
原文地址:使用IntelliJ IDEA 配置Maven 1. 下载Maven 官方地址:http://maven.apache.org/download.cgi 解压并新建一个本地仓库文件夹 2.配 ...
- 前端web的图标的样式
- java 类变量初始化顺序
假定有一个类定义如下: package com.zhang; public final class Girl { // static代码块1 private static String sex = & ...
- etymon word air aero aeri aer ag agreement walk joint trick skill chief forget out~1
1● air 2● aero 3● aeri 4● aer 空气 充气 1● ag 做,代理做 =====>agency 1● agr 2● agri 3 ...
- zabbix3.4.7版本饼图显示问题
问题描述 最近使用zabbix3.4.7版本,发现监控Linux的主机关联系统自带的Template OS Linux模版之后,磁盘空间饼图显示有问题,出现空白,如图所示 查看之后,确定为自带的Lem ...
- Win10系列:UWP界面布局进阶6
在Windows 10的"个性化设置"中,用户可以更改计算机在锁屏状态下的背景图片,除此之外,也可以通过Windows应用商店应用程序将喜欢的图片设置为锁屏背景,下面通过一个示例来 ...
- Win10系列:UWP界面布局基础11
样式继承 为了使样式便于维护及重复使用,可以在一个样式上引用其他的样式,这就是样式继承.样式继承的方法是:在Style元素的BasedOn属性上使用StaticResource标记扩展来引用被继承的样 ...
- 用linq和datatable巧妙应用于微软报表rdlc
看看代码吧.现在我用Linq已经上瘾,对SQL语言已经几乎不用了,可惜的是rdlc不支持linq,要采用sql语言生成datatable,用datatable绑定rdlc,这里,应用了一个技巧,解决了 ...
- Vue + Element UI 实现权限管理系统(优化登录流程)
完善登录流程 1. 丰富登录界面 1.1 从 Element 指南中选择组件模板丰富登录界面,放置一个登录界面表单,包含账号密码输入框和登录重置按钮. <template> <el- ...
- 解决ubuntu 14.04 “E: 无法获得锁 /var/lib/apt/lists/lock - open (11: 资源暂时不可用)”的问题
http://blog.csdn.net/nicolaskaiqi/article/details/39761757