利用Tensorflow实现逻辑回归模型
官方mnist代码:
#下载Mnist数据集
import tensorflow.examples.tutorials.mnist.input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #Tensorflow实现回归模型
import tensorflow as tf #定义变量为float型,行因为不确定先给无穷大None;列给28*28=784
x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None,10]) #向量相乘y = wx + b,w的行即为x的列,否则无法相乘;输出大小给10(因为是一个10分类任务)
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) #逻辑回归模型
#nn模块下的softmax解决多分类问题,参数:是一个预测值,即wx+b会计算出一个分值
#softmax 完成归一化操作
#得到的y是一个预测结果
y = tf.nn.softmax(tf.matmul(x, W) + b) #计算损失值:-log(p);求均值:reduce_mean
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y)), reduction_indices=1)) #训练模型
#优化器使用梯度下降
learning_rate = 0.01 #学习率
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) #评估模型
#比较一下预测值和这个标记的Label值,如果一致返回true,否则返回false
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
#计算准确率tf.cast
#计算均值tf.reduce_mean
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
常用函数:
arr = np.array([
[31,23,4,24,27,34],[18,3,25,0,6,35],[28,14,33,22,20,8]
])
#按列找出每列的最大值的索引 0按列 1按行
tf.argmax(arr, 0).eval()
#计算矩阵的维数
tf.rank(arr).eval()
#计算矩阵的行和列
tf.shape(arr).eval()
利用Tensorflow实现逻辑回归模型的更多相关文章
- tensorflow之逻辑回归模型实现
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二 ...
- 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型
MNIST 被喻为深度学习中的Hello World示例,由Yann LeCun等大神组织收集的一个手写数字的数据集,有60000个训练集和10000个验证集,是个非常适合初学者入门的训练集.这个网站 ...
- 逻辑回归模型(Logistic Regression, LR)--分类
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核 ...
- 逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函 ...
- Python之逻辑回归模型来预测
建立一个逻辑回归模型来预测一个学生是否被录取. import numpy as np import pandas as pd import matplotlib.pyplot as plt impor ...
- 逻辑回归模型(Logistic Regression)及Python实现
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳 ...
- 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数
- tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!
实现的是预测 低 出生 体重 的 概率.尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kin ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
随机推荐
- hdparm命令(转)
转自:http://man.linuxde.net/hdparm hdparm命令提供了一个命令行的接口用于读取和设置IDE或SCSI硬盘参数. 语法 hdparm(选项)(参数) 选项 -a< ...
- 理解 vm.$nextTick
有同学在看 Vue 官方文档时,对 API 文档中的 Vue.nextTick 和 vm.$nextTick 的作用不太理解. 其实如果看一下深入响应式原理 - vue.js中的有关内容,可能会有所理 ...
- Win10正式版U盘安装教程
1.首先我们需要登陆“微软中国下载中心”,从中下载一款名为“MediaCreationTool”的工具,利用该工具可以制作Win10安装U盘.直接通过以下地址快速进入“Windows下载中心”,根据自 ...
- update-alternatives符号连接的层数过多
ls -l /opt/jdk/bin/java时,显示/opt/jdk/bin/java -> /usr/bin/java ls -l /usr/bin/ava时,显示/usr/bin/java ...
- [No000014F]计算机编程语言家族史
https://www.levenez.com/lang/
- React 入门实例
React 入门实例教程 一.安装 React 的安装包,可以到官网下载. $ git clone git@github.com:ruanyf/react-demos.git 如果你没安装 git, ...
- Zabbix使用微信发送告警(附Python代码)
介绍 本文将介绍如何把zabbix告警接入到微信,通过微信企业号将告警信息发送到运维人员的微信上.本文适合于已经实现了邮件告警的小伙伴,因为需要在已经能实现告警的基础上进行,如果还不知道如何配置zab ...
- MVC 实用架构设计(三)——EF-Code First(5):二级缓存
一.前言 今天我们来谈谈EF的缓存问题. 缓存对于一个系统来说至关重要,但是是EF到版本6了仍然没有见到有支持查询结果缓存机制的迹象.EF4开始会把查询语句编译成存储过程缓存在Sql Server中, ...
- ms sql server 游标
很简单的一个小例子. /****** Object: StoredProcedure [dbo].[usp_test] Script Date: 10/28/2016 15:08:31 ******/ ...
- 《HTTP - http2.0》
推荐一首歌 - <卡路里>火箭101 杨超越真的只唱了一句! PS: 这章主要讲述了在 HTTP 发展之后的,一些扩展协议和补充,也会在这个章节对这几种协议和补充做一个比较. 1:HTTP ...