dp单调性优化
跟着书上的思路学习dp的单调性优化觉得还是很容易想的。
数据范围:
dp,数据范围是百万,这应该是O(n)的算法了。
首先不难想到设f[i]表示到第i个百米所能达到的最大能量,那么f[n]即为所求。
f[i]=max(f[i],f[j]+s[i]-s[j]-cost[i]);这个地方s数组是能量的前缀和,然后发现需要多加一层循环来枚举j,这个时候就是O(n^2)的算法了。
这样的话,就只有40分了,毕竟看分做题。这分给的还是很良心的。
考虑优化首先我们发现状态转移方程可以这样变f[i]=max{f[j]-s[j]}+s[i]-cost[i];我们这需要找到一个最大的f[j]-s[j]的即可
且f[j]还必须>=cost[i];因为这是判断能否调到也就是一个状态合法与否。
这样我们就可以维护一个双端队列来维护了!队首永远最优至于合法否我们需要小小的判断一下。
#include<bits/stdc++.h>
#include<iomanip>
#include<iostream>
#include<ctime>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
#include<vector>
#include<queue>
#include<deque>
#include<map>
#include<stack>
#include<set>
#include<bitset>
#include<cstdlib>
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void put(int x)
{
if(x==){putchar('');putchar('\n');return;}
if(x<){putchar('-');x=-x;}
int num=;char ch[];
while(x)ch[++num]=x%+'',x/=;
while(num)putchar(ch[num--]);
putchar('\n');return;
}
const int MAXN=;
int v[MAXN],cost[MAXN];
int f[MAXN];//f[i]表示前i百米所能得到的最大能量
int q[MAXN],h=,t=;
int n,m;
int main()
{
//freopen("1.in","r",stdin);
n=read();m=read();f[]=m;
for(int i=;i<=n;i++)
{
v[i]=read();
cost[i]=i*;
v[i]+=v[i-];
}
q[h]=;
for(int i=;i<=n;i++)
{
while(f[q[h]]<cost[i])h++;//题目中给出保证一定能吃完,所以这个地方不需要加h<t
f[i]=f[q[h]]-cost[i]-v[q[h]]+v[i];
while(f[q[t]]-v[q[t]]<f[i]-v[i])t--;
q[++t]=i;
}
put(f[n]);
return ;
}
显然成功了呢,复杂度就是O(n)因为每个点进出队伍一次。
对于这个题目,我竟然直接手残翻开了书,看到了状态转移方程式。哎,自己没想。
其实状态转移方程也很好想,状态设为:f[i][j]表示第i个月存仓j个零件所得到的最低成本。
由此可得,f[i][j]=min{f[i-1][k]+(u[i]+j-k)*d[i]+m*k}其中j<=s,k<=j+u[i].(显然你不能把上个月的零件卖了)
由于k这个决策也需要枚举所以复杂度是O(n*s*s)的,s那么大这肯定炸啊。预期得分也是40。
搞一下优化,大括号里得到貌似都和k有关不如先展开再说。
f[i][j]=min{f[i][k]+(m-d[i])*k}+(u[i]+j)*d[i];这样的话只有f[i][k]和(m-d[i])*k和当前决策有关了,考虑维护一个最优决策那不就可以直接进行转移了么
这样的话就是O(n*s)的啊,能A。所以考虑维护一个单调队列,等等为什么要维护队列,队列中的其他值有用么,发现只要k属于它应该属于的范围之内的话,那么这个决策就一定是合法的,所以为什么要队列,直接一个值保存即可,这样每次和生成出来的值比较哪个更小不就有了最优解么。
这里就大功告成了,乌拉。
#include<bits/stdc++.h>
#include<iomanip>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstring>
#include<string>
#include<queue>
#include<deque>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cstdlib>
#include<algorithm>
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void put(int x)
{
if(x==){putchar('');putchar('\n');return;}
if(x<)x=-x,putchar('-');
int num=;char ch[];
while(x)ch[++num]=x%+'',x/=;
while(num)putchar(ch[num--]);
}
const int MAXN=;
int n,m,s,p=;
int u[MAXN],d[MAXN];
int f[][];//f[i][j]表示第i个月保存j个商品所需最小费用。
int main()
{
//freopen("1.in","r",stdin);
n=read();m=read();s=read();
for(int i=;i<=n;i++)u[i]=read();
for(int i=;i<=n;i++)d[i]=read();
memset(f,,sizeof(f));
f[p][]=;
for(int i=;i<=n;i++)
{
p=p^;
int k=,ans=;
for(int j=;j<=s;j++)//枚举保存多少个商品
{
for(;k<=min(j+u[i],s);k++)//提供状态转移
//为什么最优的状态一定是ans呢?
//考虑到需要一个k值使ans最小且合法,合法那一定是<=min(j+u[i],s)
//得到ans就是最优的了,很显然吧,复杂度为n*s
ans=min(ans,f[p^][k]+(m-d[i])*k);
f[p][j]=ans+(u[i]+j)*d[i];
}
}
put(f[p][]);
return ;
}
显然的,我们发现当前状态只和上一个状态有关所以可以开滚动数组优化空间啊。这点完美意识还是需要的。
那么经过这两道题,相信单调性优化都了解的差不多了。可以深入学习一些其他优化了呢。
dp单调性优化的更多相关文章
- dp 单调性优化总结
对于单调性优化其实更多的是观察dp的状态转移式子的单调性 进而用优先队列 单调队列 二分查找什么的找到最优决策 使时间更优. 对于这道题就是单调性优化的很好的例子 首先打一个暴力再说. f[i][j] ...
- [NOI2009]诗人小G(dp + 决策单调性优化)
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- 2018.10.14 NOIP训练 猜数游戏(决策单调性优化dp)
传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- 单调性优化DP
单调性优化DP Tags:动态规划 作业部落链接 一.概述 裸的DP过不了,怎么办? 通常会想到单调性优化 单调队列优化 斜率优化 决策单调性 二.题目 [x] 洛谷 P2120 [ZJOI2007] ...
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
随机推荐
- js计算字符串的字节数和字符串与二进制的相互转化
一.js计算字符串的字节数方法: //blob获取字符串的字节 var debug = "好的"; var blob = new Blob([debug],{type : 'tex ...
- javascript form提交 不执行onsubmit事件解决方案
转载自:https://www.cnblogs.com/lorgine/archive/2011/03/30/2000284.html 今天做项目过程中,需要用到javascript提交form到后台 ...
- 【6集iCore3_ADP触摸屏驱动讲解视频】6-3 底层驱动之液晶显示
源视频包下载地址: 链接:http://pan.baidu.com/s/1pKSUU2v 密码:4zme 银杏科技优酷视频发布区: http://i.youku.com/gingko8
- ubuntu中文件夹的作用
/bin系統有很多放置執行檔的目錄,但/bin比較特殊.因為/bin放置的是在單人維護模式下還能夠被操作的指令. 在/bin底下的指令可以被root與一般帳號所使用,主要有:cat, chmod, c ...
- VS2012+openCV 2.4.8进行编译:VS2012 64位 使用OPENCV应用程序不能正常启动 (0xc000007b)怎么处理?
[OpenCV入门教程之一] 安装OpenCV:OpenCV 2.4.8 +VS 开发环境配置 http://blog.csdn.net/poem_qianmo/article/details/198 ...
- 教程:SpagoBI开源商业智能之XML Template 图表模板
SpagoBI offers a variety of widgets' examples realized with the Highcharts library, that can be divi ...
- Angular4学习笔记(十)- 组件间通信
分类 父子组件通信 非父子组件通信 实现 父子 父子组件通信一般使用@Input和@Output即可实现,参考Angular4学习笔记(六)- Input和Output 通过Subject 代码如下: ...
- [Cubieboard] 安装 Lubuntu server for SDCard
硬件:Cubieboard2 系统:Ubuntu 14.04 based on VMware Virtual Machine 镜像:cb2-lubuntu-server-tsd-tfcard-v2.0 ...
- nuxt项目中vue报错The client-side rendered virtual ...
报错: 翻译过来是: [Vue警告]:客户端呈现的虚拟DOM树与服务器呈现的内容不匹配.这可能是由不正确的HTML标记引起的,例如在其中嵌套块级元素或丢失.Bailing水化和执行完整的客户端渲染. ...
- 第9天 py就业班基础02.01-02
明天该看就业班的02 03字串符 2018-4-21 10:47:34 数据类型 py自动给数据分类型 2018-4-21 10:55:05 input使用 定义一个变量 然后input输给变 ...