单调性 [1 + 1 / (n)]^n
def f(n):
n += 0.0
s = 1 + 1 / (n)
r = pow(s, n)
print(n, ',', r)
return r l = []
for i in range(1, 1000000, 1):
s = f(i + 1) - f(i)
print(s)
if s <= 0:
print(i, ':', s)
l.append(i)
if len(l) > 50:
break
print(l)
l = [132360, 132917, 133630, 134042, 135058, 135334, 135537, 135602, 135846, 135890, 135953, 136232, 136307, 136316,
136372, 136610, 136779, 136992, 137004, 137056, 137066, 137084, 137153, 137322, 137383, 137587, 137726, 137905,
137942, 137991, 138164, 138254, 138423, 138466, 138489, 138642, 138932, 138957, 139056, 139339, 139363, 139406,
139465, 139531, 139550, 139563, 139595, 139640, 139666, 139752, 139782]
139783.0 , 2.718272105261508
139782.0 , 2.7182721052675713
-6.063149982082905e-12
139782 : -6.063149982082905e-12
[132360, 132917, 133630, 134042, 135058, 135334, 135537, 135602, 135846, 135890, 135953, 136232, 136307, 136316, 136372, 136610, 136779, 136992, 137004, 137056, 137066, 137084, 137153, 137322, 137383, 137587, 137726, 137905, 137942, 137991, 138164, 138254, 138423, 138466, 138489, 138642, 138932, 138957, 139056, 139339, 139363, 139406, 139465, 139531, 139550, 139563, 139595, 139640, 139666, 139752, 139782]
from decimal import *
def f(n):
n += 0.0
s =Decimal(1 + 1 / (n))
r = pow(Decimal(s), Decimal(n))
print(n, ',', r)
return r
l = []
for i in range(1, 1000000, 1):
s = f(i + 1) - f(i)
print(s)
if s <= 0:
print(i, ':', s)
l.append(i)
if len(l) > 50:
break
print(l)
139783.0 , 2.718272105261508172529079121
139782.0 , 2.718272105267571503080835127
-6.063330551756006E-12
139782 : -6.063330551756006E-12
[132360, 132917, 133630, 134042, 135058, 135334, 135537, 135602, 135846, 135890, 135953, 136232, 136307, 136316, 136372, 136610, 136779, 136992, 137004, 137056, 137066, 137084, 137153, 137322, 137383, 137587, 137726, 137905, 137942, 137991, 138164, 138254, 138423, 138466, 138489, 138642, 138932, 138957, 139056, 139339, 139363, 139406, 139465, 139531, 139550, 139563, 139595, 139640, 139666, 139752, 139782]
单调性 [1 + 1 / (n)]^n的更多相关文章
- SDOI 2016 征途 决策单调性
题目大意:有一个数列,将其分成m段,求最小方差 先弄出n^3的dp,打出决策点,然后发现决策点是单调递增的,决策单调性搞一搞就可以了 #include<bits/stdc++.h> #de ...
- hdu 4412 利用单调性的动态规划
思路: 这题和1227的求法一样,只不过1227是小数据,暴力下,就能进行预处理. 这题的预处理区间期望cost[i][j]需要利用单调性. 即假使以pos位置为安排的点,那么这个区间在其左边的概率为 ...
- BZOJ2739 最远点(分治 + 决策单调性)
2739: 最远点 Time Limit: 20 Sec Memory Limit: 256 MB Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据 ...
- 【NOIP2016】蚯蚓(队列,单调性)
题目不再重复叙述 请参考: 洛谷 CJOJ 题解 先来说说非完美解法,也是我去年考场上的做法 考虑一下每一只蚯蚓增加的长度, 这个值并不需要每一次依次增加, 用一个变量维护即可,每次取出蚯蚓就加上这个 ...
- [NOI2009]诗人小G(dp + 决策单调性优化)
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...
- 2019.02.21 bzoj2739: 最远点(决策单调性+分治)
传送门 题意简述:给一个N个点的凸多边形,求离每一个点最远的点. 思路:先根据初中数学知识证明决策是满足单调性的,然后上分治优化即可. 才不是因为博主懒得写二分+栈优化呢 代码: #include&l ...
随机推荐
- 改变R和Matlab的默认工作目录
在快捷方式上右键->属性->起始位置处填上你需要的默认工作目录即可
- Handler消息传递机制浅析
http://www.runoob.com/w3cnote/android-tutorial-handler-message.html https://blog.csdn.net/lowprofile ...
- ES6,Array.copyWithin()函数的用法
ES6为Array增加了copyWithin函数,用于操作当前数组自身,用来把某些个位置的元素复制并覆盖到其他位置上去. Array.prototype.copyWithin(target, star ...
- 【九天教您南方cass 9.1】 10 DTM土方计算的四种方法
同学们大家好,欢迎收看由老王测量上班记出品的cass9.1视频课程 我是本节课主讲老师九天. 我们讲课的教程附件也是共享的,请注意索取测量空间中. [点击索取cass教程]5元立得 (给客服说暗号:“ ...
- ECSHOP后台编辑器不能上传中文名图片的解决办法
在后台上传商品图片的时候,如果你选择一个中文名称的图片,那么上传后会产生乱码,导致图片显示不出来. 下面说一种解决办法: 使用“年月日时分秒 + 6个随机字符”做为文件名,如 201010161356 ...
- mininet下建立拓扑时关于远程控制器的一个小问题
最近重装了系统和mininet后,使用mininet时遇到了一点小问题,一开始忽视了细节,使得自己被这个问题困扰了好一会儿,好在后来还是发现了问题所在,故记录下来. $ sudo mn --topo ...
- Go指南练习_Reader
https://tour.go-zh.org/methods/22 一.题目描述 实现一个 Reader 类型,它产生一个 ASCII 字符 'A' 的无限流. 二.题目分析 io 包指定了 io.R ...
- SSH远程连接Linux配置
CentOS: 开启远程连接服务:service sshd start 添加到系统启动项:chkconfig sshd on 客户端工具:windows下连接工具putty ========= ...
- Pytest运行测试用例的多种方式和调试
测试用例上方使用多个fixtures叠加时,是从下往上进行fixtures调用的.如果是 @pytest.mark.usefixtures('action','a','action2')这种形式,是从 ...
- 使用Sublime Text搭建python调试环境[转]
pycharmt等IDE虽然用着爽,但毕竟在速度.资源上还是比较让人不爽的. 使用IDE无非是图个方便省事,特别是像我这种有些记性差的来说. IDE说起来方便于的几个地方就是: 1.语法颜色高亮 2. ...