def f(n):
n += 0.0
s = 1 + 1 / (n)
r = pow(s, n)
print(n, ',', r)
return r l = []
for i in range(1, 1000000, 1):
s = f(i + 1) - f(i)
print(s)
if s <= 0:
print(i, ':', s)
l.append(i)
if len(l) > 50:
break
print(l)
l = [132360, 132917, 133630, 134042, 135058, 135334, 135537, 135602, 135846, 135890, 135953, 136232, 136307, 136316,
136372, 136610, 136779, 136992, 137004, 137056, 137066, 137084, 137153, 137322, 137383, 137587, 137726, 137905,
137942, 137991, 138164, 138254, 138423, 138466, 138489, 138642, 138932, 138957, 139056, 139339, 139363, 139406,
139465, 139531, 139550, 139563, 139595, 139640, 139666, 139752, 139782]

139783.0 , 2.718272105261508
139782.0 , 2.7182721052675713
-6.063149982082905e-12
139782 : -6.063149982082905e-12
[132360, 132917, 133630, 134042, 135058, 135334, 135537, 135602, 135846, 135890, 135953, 136232, 136307, 136316, 136372, 136610, 136779, 136992, 137004, 137056, 137066, 137084, 137153, 137322, 137383, 137587, 137726, 137905, 137942, 137991, 138164, 138254, 138423, 138466, 138489, 138642, 138932, 138957, 139056, 139339, 139363, 139406, 139465, 139531, 139550, 139563, 139595, 139640, 139666, 139752, 139782]


from decimal import *
def f(n):
n += 0.0
s =Decimal(1 + 1 / (n))
r = pow(Decimal(s), Decimal(n))
print(n, ',', r)
return r
l = []
for i in range(1, 1000000, 1):
s = f(i + 1) - f(i)
print(s)
if s <= 0:
print(i, ':', s)
l.append(i)
if len(l) > 50:
break
print(l)

139783.0 , 2.718272105261508172529079121
139782.0 , 2.718272105267571503080835127
-6.063330551756006E-12
139782 : -6.063330551756006E-12
[132360, 132917, 133630, 134042, 135058, 135334, 135537, 135602, 135846, 135890, 135953, 136232, 136307, 136316, 136372, 136610, 136779, 136992, 137004, 137056, 137066, 137084, 137153, 137322, 137383, 137587, 137726, 137905, 137942, 137991, 138164, 138254, 138423, 138466, 138489, 138642, 138932, 138957, 139056, 139339, 139363, 139406, 139465, 139531, 139550, 139563, 139595, 139640, 139666, 139752, 139782]

单调性 [1 + 1 / (n)]^n的更多相关文章

  1. SDOI 2016 征途 决策单调性

    题目大意:有一个数列,将其分成m段,求最小方差 先弄出n^3的dp,打出决策点,然后发现决策点是单调递增的,决策单调性搞一搞就可以了 #include<bits/stdc++.h> #de ...

  2. hdu 4412 利用单调性的动态规划

    思路: 这题和1227的求法一样,只不过1227是小数据,暴力下,就能进行预处理. 这题的预处理区间期望cost[i][j]需要利用单调性. 即假使以pos位置为安排的点,那么这个区间在其左边的概率为 ...

  3. BZOJ2739 最远点(分治 + 决策单调性)

    2739: 最远点 Time Limit: 20 Sec Memory Limit: 256 MB Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据 ...

  4. 【NOIP2016】蚯蚓(队列,单调性)

    题目不再重复叙述 请参考: 洛谷 CJOJ 题解 先来说说非完美解法,也是我去年考场上的做法 考虑一下每一只蚯蚓增加的长度, 这个值并不需要每一次依次增加, 用一个变量维护即可,每次取出蚯蚓就加上这个 ...

  5. [NOI2009]诗人小G(dp + 决策单调性优化)

    题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...

  6. CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)

    题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...

  7. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  8. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  9. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  10. 2019.02.21 bzoj2739: 最远点(决策单调性+分治)

    传送门 题意简述:给一个N个点的凸多边形,求离每一个点最远的点. 思路:先根据初中数学知识证明决策是满足单调性的,然后上分治优化即可. 才不是因为博主懒得写二分+栈优化呢 代码: #include&l ...

随机推荐

  1. linux每日命令(18):whereis命令

    whereis命令用于查找文件. 该指令会在特定目录中查找符合条件的文件.这些文件应属于原始代码.二进制文件,或是帮助文件. 该指令只能用于查找二进制文件.源代码文件和man手册页,一般文件的定位需使 ...

  2. python bottle框架 解决跨域问题的正确方式

    经查询,网上有几种说法 https://www.cnblogs.com/EmptyFS/p/6138923.html 我首先查到的就是这个,我采用了文中所说的修改源码的方式, 但是经测试发现,修改源码 ...

  3. app 调用接口

    app 调用接口 /// <summary> /// 是否跳转到活动注册成功页面 /// </summary> /// <returns></returns& ...

  4. Android Launcher分析和修改6——页面滑动(PagedView)

    本来打算分析CellLayout的源码,不过因为它们之间是容器包含关系,所以打算先把PagedView分析.PagedView代码很多,今天主要是分析跟核心功能相关的代码.PagedView主要实现一 ...

  5. 【iCore4 双核心板_FPGA】例程五:基础逻辑门实验——逻辑门使用

    实验现象: 打开tool-->Netlist viewer-->RTL viewer可观察各个逻辑连接 核心代码: //--------------------module_logic_g ...

  6. 深夜一次数据库执行SQL思考(怎么看执行报错信息)

    如下sql在执行时 DROP TABLE IF EXISTS `book`; CREATE TABLE `book` ( `id` int(11) NOT NULL AUTO_INCREMENT, ` ...

  7. elasticsearch client 为空 错误信息:java.lang.NoSuchMethodError: com.google.common.util.concurrent.MoreExecutors.directExecut‌​or()Ljava/util/concu‌​rrent/Executor

    错误信息:java.lang.NoSuchMethodError: com.google.common.util.concurrent.MoreExecutors.directExecut‌​or() ...

  8. Android WiFi 获取国家码

    记录一下Android获取国家码的方式 Wifi 国家码获取途径 1.DefaultCountryTablefield in WCNSS_qcom_wlan_nv.bin-read during dr ...

  9. easyradius通讯接口 V4全新升级,显示同步失败原因,方便用户寻找故障

    最近一段时间,我们做了很多的努力,不仅完成了WayOs.BV.ROS.IK.PA接口的重写(主要加入智能判断,能处理的直接处理,不能处理的告诉用户),而且在原有DDNS访问失败的提示下,升级了同步失败 ...

  10. Java虚拟机(二):Java GC算法 垃圾收集器

    概述 垃圾收集 Garbage Collection 通常被称为“GC”,它诞生于1960年 MIT 的 Lisp 语言,经过半个多世纪,目前已经十分成熟了. jvm 中,程序计数器.虚拟机栈.本地方 ...