组合

又到了我们信息老师讲数学课了,吼吼吼

然后数学老师中途探望了一下,哇塞塞,然后他看到黑板上的题,微妙的笑了.


排列:

从n个数中有序的选出m个数的方案数是多少?
第一个数有n种取法,第二个数有n-1种取法......第m个数有n-m+1种取法。

n*(n-1)*...*(n-m+1)=n!/(n-m)!记为A(n,m).

组合:

从n个数中无序的选出m个数的方案数是多少?

先有序的取m个数,那么无序的m个数会被取到m!次。

A(n,m)/m!=n!/[m!(n-m)!]记为C(n,m)

C(n,m)=C(n-1,m)+C(n-1,m-1).

组合数的性质:1.C(m,n)=C(n-m,n)

       2.C(m,n)=C(m,n-1)+C(m-1,n-1)

       3.C(0,n)+C(1,n)+C(2,n)+...+C(n,n)=2^n

       4.C(n,n)+C(n,n+1)+C(n,n+2)+...+C(n,n+r)=C(n+1,n+r+1)

       5.C(0,n)+C(2,n)+C(4,n)+...=C(1,n)+C(3,n)+C(5,n)+...=2^(n-1)

something else:

1.n个人围着一张圆桌坐在一起,共有(n-1)! 种坐法。

2.从n个排成一排的数中取m个数,且数字之间互不相邻,共有C(m,n-m+1)种取法。

二次项定理:

(a+b)^n=∑(0<=k<=n)C(k,n)*(a^k)*(b^(n-k))

友情证明:可爱的数学归纳法

      当n=1时,(a+b)^1=C(0,n)*(a^0)*(b^1)+C(1,n)*(a^1)*(b^0)=a+b成立

      假设当n=m时命题成立,当n=m+1时:

      (a+b)^(m+1)=(a+b)(a+b)^m

      =(a+b)∑(0<=k<=n)C(k,m)*(a^k)*(b^(m-k))

      =...=∑(0<=k<=m+1)C(k,m+1)*(a^k)*(b^(m+1-k))

那么,二次项定理有什么用呢?

我可以负责任的告诉你,这个数学里是经常考的,2017年的浙江高中数学省赛卷第一题就是这个东西,它可以被用于证明可爱的费马小定理...我知道你心里已经开始喊停了...

但数学和信息是分不开的,数学班的同学告诉我们数学老师在数学班里讲树还有剪枝,数学奥林匹克命题人讲座(简称命题人)的《组合问题》的编写者之一就是毕业于计算机系的...

所以还是对数学好点吧。

正事,想知道浙江省省赛卷第一题是怎么出的吗?(不想知道,我还是会讲)

二次项定理的直接运用,不要你计算,我们把他变成信息题,如下:

题目:给定一个多项式(ax+by)^k,求出多项式展开后的x^n*y^m项的系数,对10007取模。

0<=n,m<=k<=1000,n+m=k,0<=a,b<=1000000。

根据二次项定理,有(ax+by)^k=∑(0<=i<=k)C(i,k)*(a^i)*(b^(k-i))*(x^i)*(y^(k-i))

         所以(x^n)*(y^m)的系数即为C(n,k)*(a^n)*(b^m),直接计算就好。

数学题是不是很简单,只不过算的很烦,然而信息就不存在这种问题了,所以我爱信息,呦吼吼!

隔板法

隔板法又称插空法,就是在n个元素间插入(m-1)个板,即把n个元素分成m组的方法。

eg:

将20个大小形状完全相同的小球放入3个不同的盒子,允许有盒子为空,但球必须放完,有多少种不同的方法?
 
分析:本题中的小球大小形状完全相同,故这些小球没有区别,问题等价于将小球分成三组,允许有若干组无元素,用隔板法.
 
解析:将20个小球分成三组需要两块隔板,因为允许有盒子为空,不符合隔板法的原理,那就人为的再加上3个小球,保证每个盒子都至少分到一个小球,那就符合隔板法的要求了(分完后,再在每组中各去掉一个小球,即满足了题设的要求)。然后就变成待分小球总数为23个,球中间有22个空档,需要在这22个空档里加入2个隔板来分隔为3份,共有C(22,2)=231种不同的方法.
 
点评:对n件相同物品(或名额)分给m个人(或位置),允许若干个人(或位置)为空的问题,可以看成将这n件物品分成m组,允许若干组为空的问题.将n件物品分成m组,需要m-1块隔板,将这n件物品和m-1块隔板排成一排,占n+m-1位置,从这n+m-1个位置中选m-1个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有Cn+m-1 m-1种不同的方法,再将物品放入其余位置,因物品相同无差别,故物品之间无顺序,是组合问题,只有1种放法,根据分步计数原理,共有Cn+m-1 m-1×1=Cn+m-1 m-1种排法.
 
那么就引出了一个大大的栗子-o.o-:球和袋子的问题 

n个球和m个袋子,已经有大佬总结得可了,棒棒_qwq_(颜文字中毒期)

这里呢我们再小小的分析一下球和袋子的问题:

1.将n个不同的球放到m个相同的袋子里有多少种方案?(没有空袋子哦)

用f[i][j]表示将i个不同的球放到j个相同的袋子,并保证每个袋子里都有球的方案数。

我们考虑第i个球是不是单独放的,f[i][j]=f[i-1][j-1]+f[i-1][j]*j

答案是f[n][0]+f[n][1]+...f[n][m].时间复杂度是O(nm)

以上为ppt原话,反正我是没怎么懂那个式子是怎么出来的,各位大佬可能懂了吧,我太菜了啊~~~那么,不懂的和我一样的蒟蒻们来看一下我的思路吧:(来自一位蒟蒻的分享)

f[i][j]表示将i个不同的球放到j个相同的袋子中,

假设前面的i-1个球都放好了,放在了j个袋子里,其方案数为f[i-1][j],此时还有一个球要和哪一坨球同居呢?有j个袋子,有j种选择,所以为f[i-1][j]*j(乘法原理,不要告诉我你不会,这真的是小学数学) 。

假设前i-1个球放在了j-1个袋子里,那么第i个球一定在剩余的空袋子里(保证每个袋子里都有球)已有的方案数为f[i-1][j-1].

加一加,就得到了大佬ppt上的式子:f[i][j]=f[i-1][j-1]+f[i-1][j]*j

2.将n个相同的球放在m个相同的袋子里有多少种方案?

由于袋子是相同的,我们通过保证球数是单调不减的来防止重复统计。用f[i][j]表示将i个相同的球放到j个相同的袋子里的方案数。

考虑第一个袋子是否放球,如果放的话,由于球数单调不减,我们必须在每个袋子里都放一个球。

如果不放的话,那我们直接考虑后面的袋子。

f[i][j]=f[i-j][j]+f[i][j-1].时间复杂度O(nm)


集训DAYn——组合数学(1)的更多相关文章

  1. 集训DAYn——拉格朗日插值法

    看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...

  2. 2018.10.30 uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

    传送门 组合数学妙题. 我们把这mmm个数都减去111. 然后出牌的地方就变成了−1-1−1. 然后发现求出每个位置的前缀和之后全部都是非负数. 考虑在最后加入一个−1-1−1构成一个m+1m+1m+ ...

  3. 牛客国庆集训派对Day4 I-连通块计数(思维,组合数学)

    链接:https://www.nowcoder.com/acm/contest/204/I 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  4. uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

    传送门 一道打表题 我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\) 考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1 ...

  5. 2019暑期集训第二讲 - 组合数学&概率&数学期望

    A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...

  6. 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)

    洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...

  7. 2017/10 冲刺NOIP集训记录:暁の水平线に胜利を刻むのです!

    前几次集训都没有记录每天的点滴……感觉缺失了很多反思的机会. 这次就从今天开始吧!不能懈怠,稳步前进! 2017/10/1 今天上午进行了集训的第一次考试…… 但是这次考试似乎是近几次我考得最渣的一次 ...

  8. 2014暑假ACM13级一批集训内容

    2014 这个暑假,我大一的暑假来吧!!! 2014暑假ACM13级一批集训内容 集训期间时间安排: 周一到周六 上午:8:00-11:30 下午:2:00-5:30 晚上7:00-9:30 周日自由 ...

  9. NOIP2018赛前停课集训记(10.24~11.08)

    前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃 ...

随机推荐

  1. Javascript-全局函数和局部函数作用域的理解

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. EL的隐含对象 (二)【访问作用域范围的隐含对象】

    在EL中提供了4个用于访问作用域范围的隐含对象,即pageScope.requestScope.sessionScope和applicationScope.应用这4个隐含对象指定所要查找的标识符的作用 ...

  3. clear/reset select2,重置select2,恢复默认

    4.0 version //方法一$('#yourButton').on('click', function() { $('#yourfirstSelect2').val(null).trigger( ...

  4. Nginx常用功能

    3.Nginx常用功能 3.1 反向代理服务器 3.1.1.demo2 a.我在tomcat下部署了一个javaweb项目,tomcat安装的服务器IP为:192.168.37.136,部署的项目在t ...

  5. OpenGL and Vulkan resources

    OpenGL https://www.zhihu.com/question/22005157https://open.gl/https://github.com/cybercser/OpenGL_3_ ...

  6. DX9 空间坐标变换示例代码

    // @time 2012.3.25 // @author jadeshu #include <Windows.h> #include <d3d9.h> #include &l ...

  7. Spring Cloud 服务的注册与发现(Eureka)

    Eureka服务注册中心 一.Eureka Server Eureka Server是服务的注册中心,这是分布式服务的基础,我们看看这一部分如何搭建. 首先,Spring Cloud是基于Spring ...

  8. html5-css背景

    div{    width: 300px;    height: 300px;    border:50px groove rgba(200,60,30,0.5);    /*background-c ...

  9. 随机模拟(MCMC)

    http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ http://blog.csdn.net/lin360580306/article/ ...

  10. 开源词袋模型DBow3原理&源码(二)ORB特征的保存和读取

    util里提供了create_voc_step0用于批量生成features并保存,create_voc_step1读入features再生成聚类中心,比较适合大量语料库聚类中心的生成. 提取一张图的 ...