GIL机制导致如下结果:

Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行)
python多线程适合io操作密集型的任务(如socket server 网络并发这一类的)
python多线程不适合cpu密集操作型的任务,主要使用cpu来计算,如大量的数学计算。
那么如果有cpu密集型的任务怎么办,可以通过多进程来操作(不是多线程)。
假如CPU有8核,每核CPU都可以用1个进程,每个进程可以用1个线程来进行计算。

 1、线性模式测试

 import requests
import time
from threading import Thread
from multiprocessing import Process #定义CPU密集的计算函数
def count(x, y):
# 使程序完成150万计算
c = 0
while c < 500000:
c += 1
x += x
y += y #定义IO密集的文件读写函数
def write():
f = open("test.txt", "w")
for x in range(5000000):
f.write("testwrite\n")
f.close() def read():
f = open("test.txt", "r")
lines = f.readlines()
f.close() def io():
write()
read() #定义网络请求函数
_head = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}
url = "http://www.tieba.com"
def http_request():
try:
webPage = requests.get(url, headers=_head)
html = webPage.text
return {"context": html}
except Exception as e:
return {"error": e} #---------------------------------------
#CPU密集操作
t = time.time()
for x in range(10):
count(1, 1)
print("Line cpu", time.time() - t) # IO密集操作
t = time.time()
for x in range(10):
io()
print("Line IO", time.time() - t) # 网络请求密集型操作
t = time.time()
for x in range(10):
http_request()
print("Line Http Request", time.time() - t)
 --运行---------------------结果:
('Line cpu', 97.26900005340576)
('Line IO', 24.319000005722046)
('Line Http Request', 209.94899988174438)

2、线程模式测试
 #定于线程公共函数
def mythread(fun,*args):
counts = []
for x in range(10):
thread = Thread(target=fun, args=args)
counts.append(thread)
thread.start()
e = counts.__len__()
while True:
for th in counts:
if not th.is_alive():
e -= 1
if e <= 0:
break #测试多线程并发执行CPU密集操作所需时间
t = time.time()
mythread(count,1,1)
print("thread cpu ",time.time() - t) #测试多线程并发执行IO密集操作所需时间
t = time.time()
mythread(io)
print("thread IO ",time.time() - t) #测试多线程并发执行网络密集操作所需时间
t = time.time()
mythread(http_request)
print("Thread Http Request", time.time() - t)
--运行---------------------结果:

('thread cpu ', 102.20300006866455)
('thread IO ', 654.5730001926422)
('Thread Http Request', 21.170999765396118)

3.进程模式测试

 def myprocess(fun,*args):
counts = []
for x in range(10):
process = Process(target=fun,args=args)
counts.append(process)
process.start()
e = counts.__len__()
while True:
for th in counts:
if not th.is_alive():
e -= 1
if e <= 0:
break if __name__ == '__main__': #没这句会报错。
#测试多进程并发执行CPU密集操作所需时间
t = time.time()
myprocess(count,1,1)
print("Multiprocess cpu", time.time() - t) #测试多进程并发执行IO密集型操作
t = time.time()
myprocess(io)
print("Multiprocess IO", time.time() - t) #测试多进程并发执行Http请求密集型操作
t = time.time()
myprocess(http_request)
print("Multiprocess Http Request", time.time() - t)
--运行---------------------结果:

('Multiprocess cpu', 20.168999910354614)
('Multiprocess IO', 11.82699990272522)
('Multiprocess Http Request', 21.805000066757202)

实验结果

  CPU密集型操作 IO密集型操作 网络请求密集型操作
单线程操作 97 24 310
多线程操作 102 654
多进程操作 22

通过上面的结果,我们可以看到:

  • 多线程在IO密集型的操作下似乎也没有很大的优势,在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了
  • 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行

一句话总结:cpu和io密集操作使用多进程,网络操作使用多线程   

Python中单线程、多线程和多进程的效率对比实验的更多相关文章

  1. 011_Python中单线程、多线程和多进程的效率对比实验

    Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势.而使用多进程(Multiprocess),则可以发挥多 ...

  2. 在python中单线程,多线程,多进程对CPU的利用率实测以及GIL原理分析

    首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环. 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时 ...

  3. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  4. python爬虫之多线程、多进程+代码示例

    python爬虫之多线程.多进程 使用多进程.多线程编写爬虫的代码能有效的提高爬虫爬取目标网站的效率. 一.什么是进程和线程 引用廖雪峰的官方网站关于进程和线程的讲解: 进程:对于操作系统来说,一个任 ...

  5. python分别使用多线程和多进程获取所有股票实时数据

    python分别使用多线程和多进程获取所有股票实时数据   前一天简单介绍了python怎样获取历史数据和实时分笔数据,那么如果要获取所有上市公司的实时分笔数据,应该怎么做呢? 肯定有人想的是,用一个 ...

  6. python中的多线程和多进程

    一.简单理解一下线程和进程 一个进程中可有多个线程,线程之间可共享内存,进程间却是相互独立的.打比方就是,进程是火车,线程是火车厢,车厢内人员可以流动(数据共享) 二.python中的多线程和多进程 ...

  7. java中多种写文件方式的效率对比实验

    一.实验背景 最近在考虑一个问题:“如果快速地向文件中写入数据”,java提供了多种文件写入的方式,效率上各有异同,基本上可以分为如下三大类:字节流输出.字符流输出.内存文件映射输出.前两种又可以分为 ...

  8. Python进阶:多线程、多进程和线程池编程/协程和异步io/asyncio并发编程

    gil: gil使得同一个时刻只有一个线程在一个CPU上执行字节码,无法将多个线程映射到多个CPU上执行 gil会根据执行的字节码行数以及时间片释放gil,gil在遇到io的操作时候主动释放 thre ...

  9. python之路-----多线程与多进程

    一.进程和线程的概念 1.进程(最小的资源单位): 进程:就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成. 程序:我们编写的程序用来描述进程要完成哪些功能以 ...

随机推荐

  1. Many Website Of WallPaper

    我在这里给大家推荐几个不错的壁纸网站 毕竟一张赏心悦目的壁纸能让你的工作效率提高不少 注意前方高能 一大波网站即将来袭 一系列 如你所见 alphacoders wallpaperdj Wallhav ...

  2. (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks

    Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in  ...

  3. kubectl基础支持

    kubectl get deployment -n alpha kubectl get deployment *****-deployment -n alpha -o json kubectl rol ...

  4. Jdk在window环境下的安装与配置详解

    本文为博主原创,转载请注明出处: 1.2  Java程序开发环境的配置 java开发工具包:java开发工具:记事本 IDE,这个只能写小程序,写大程序需要集成开发工具:反编译工具(我们可以在网上找一 ...

  5. springmvc异步上传图片并回调页面函数插入图片url代码示例

    <tr> <td class="search_td">属性值图片值:</td> <td> <input type=" ...

  6. 爬虫系列之requests

    爬取百度内容: import requests url = "https://www.baidu.com" if __name__ == '__main__': try: kv = ...

  7. Python open 读写小栗子

    1.样本内容 A.txt 2.上代码: f=open(r'E:\A.txt','r') boyA=[] boyB=[] count = for each_line in f: ]!='======': ...

  8. R语言学习 - 非参数法生存分析--转载

    生存分析指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析.常用于肿瘤等疾病的标志物筛选.疗效及预后的考 ...

  9. dbm.error: need 'c' or 'n' flag to open new db

    #coding=utf-8 import shelve with shelve.open("shelve.ini","w") as f: f["k1& ...

  10. 异常处理.VC++

    ZC:个人这样 理解 C++的异常处理: ZC: (1).C++标准异常处理,try{}catch{} 抛异常:throw() [ 据说是包装的Windows函数RaiseException() ] ...