『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上
总结一下相关概念:
- torch.Tensor - 一个近似多维数组的数据结构
- autograd.Variable - 改变Tensor并且记录下来操作的历史记录。和Tensor拥有相同的API,以及backward()的一些API。同时包含着和张量相关的梯度
- nn.Module - 神经网络模块,便捷的数据封装,能够将运算移往GPU,还包括一些输入输出的东西
- nn.Parameter - 一种变量(Variable),当将任何值赋予Module时自动注册为一个参数
- autograd.Function - 实现了使用自动求导方法的前馈和后馈的定义。每个Variable的操作都会生成至少一个独立的Function节点,与生成了Variable的函数相连之后记录下操作历史
导入库:
# Author : Hellcat
# Time : 2018/2/10 import torch as t
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
torch.nn:网络层
torch.nn.functional:激活函数、池化函数归于此模块
pytorch中的网络层是class,而tensorflow
print(t.nn.Conv2d)
<class 'torch.nn.modules.conv.Conv2d'>
print(tf.nn.conv2d)
<function conv2d at 0x000001A33CC44510>
网络主体:
net网络要使用class并继承父类才行,因而有一些自带的方法
net.parameters():返回全部的参数值,迭代器
net.named_parameters():返回参数名称和值,迭代器
net.参数名:就是参数变量,Variable,可以直接查看data和grad等等
class Net(nn.Module):
def __init__(self):
# nn.Module子类的函数必须在构造函数中执行父类的构造函数
# 等价于nn.Model.__init__(self)
super(Net,self).__init__() # 输入1通道,输出6通道,卷积核5*5
self.conv1 = nn.Conv2d(1, 6, 5)
# 定义卷积层:输入6张特征图,输出16张特征图,卷积核5x5
self.conv2 = nn.Conv2d(6,16,5)
# 定义全连接层:线性连接(y = Wx + b),16*5*5个节点连接到120个节点上
self.fc1 = nn.Linear(16*5*5,120)
# 定义全连接层:线性连接(y = Wx + b),120个节点连接到84个节点上
self.fc2 = nn.Linear(120,84)
# 定义全连接层:线性连接(y = Wx + b),84个节点连接到10个节点上
self.fc3 = nn.Linear(84,10) # 定义向前传播函数,并自动生成向后传播函数(autograd)
def forward(self,x):
# 输入x->conv1->relu->2x2窗口的最大池化->更新到x
x = F.max_pool2d(F.relu(self.conv1(x)),(2,2))
# 输入x->conv2->relu->2x2窗口的最大池化->更新到x
x = F.max_pool2d(F.relu(self.conv2(x)),2)
# view函数将张量x变形成一维向量形式,总特征数不变,为全连接层做准备
x = x.view(x.size()[0], -1)
# 输入x->fc1->relu,更新到x
x = F.relu(self.fc1(x))
# 输入x->fc2->relu,更新到x
x = F.relu(self.fc2(x))
# 输入x->fc3,更新到x
x = self.fc3(x)
return x if __name__ == "__main__": net = Net()
展示网络参数:
# #########查看参数#########
print(net)
"""
Net(
(conv1): Conv2d (1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d (6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120)
(fc2): Linear(in_features=120, out_features=84)
(fc3): Linear(in_features=84, out_features=10)
)
""" # 返回参数值:顺序和下面的named一致
params = list(net.parameters())
print(len(params))
"""
10
""" # net.named_parameters(): ((参数名称,参数属性),……)
for name, parameters in net.named_parameters():
print(name, ":", parameters.size())
"""
conv1.weight : torch.Size([6, 1, 5, 5])
conv1.bias : torch.Size([6])
conv2.weight : torch.Size([16, 6, 5, 5])
conv2.bias : torch.Size([16])
fc1.weight : torch.Size([120, 400])
fc1.bias : torch.Size([120])
fc2.weight : torch.Size([84, 120])
fc2.bias : torch.Size([84])
fc3.weight : torch.Size([10, 84])
fc3.bias : torch.Size([10])
"""
模拟单次向前&向后传播:
# #########网络传播过程模拟#########
# 输入如果没有batch数,则少一维度,Tensor,unsqueeze()可以为张量扩维
input_ = Variable(t.randn(1, 1, 32, 32))
out = net(input_)
print(out.size())
"""
torch.Size([1, 10])
"""
# net.zero_grad()
# 输出值为10个标量(一个向量),所以需要指定每个标量梯度的权重
# out.backward(t.ones(1,10))
注意: torch.nn 只接受小批量的数据
整个torch.nn包只接受那种小批量样本的数据,而非单个样本。 例如,nn.Conv2d能够结构一个四维的TensornSamples x nChannels x Height x Width。
如果你拿的是单个样本,使用input.unsqueeze(0)来加一个假维度就可以了。
维度是[batch,channel,height,width]。
Loss函数构建
# #########Loss设计#########
target = Variable(t.arange(0,10))
# Loss需要先实例化,然后是callable的实例
loss_fn = nn.MSELoss() # 均方误差
loss = loss_fn(out, target)
print(loss) net.zero_grad()
print("反向传播之前:", net.conv1.bias.grad)
loss.backward()
print("反向传播之后:", net.conv1.bias.grad)
反向传播之前: None
反向传播之后: Variable containing:
-0.1330
-0.0888
-0.0101
-0.0186
0.0462
0.0317
[torch.FloatTensor of size 6]
优化器构建
# #########优化器设计#########
print(net.parameters())
"""
<generator object Module.parameters at 0x0000021B525BE888>
"""
# 初始化优化器
optimizer = optim.SGD(net.parameters(), lr=0.01) optimizer.zero_grad() # 效果等同net.zero_grad() output = net(input_)
loss = loss_fn(output, target) loss.backward()
print("反向传播之前:", net.conv1.bias.data)
optimizer.step()
print("反向传播之后:", net.conv1.bias.data)
反向传播之前:
-0.1702
0.1192
0.1349
0.1307
-0.0141
-0.0558
[torch.FloatTensor of size 6]反向传播之后:
-0.1689
0.1201
0.1350
0.1309
-0.0146
-0.0561
[torch.FloatTensor of size 6]
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上的更多相关文章
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- 『MXNet』第四弹_Gluon自定义层
一.不含参数层 通过继承Block自定义了一个将输入减掉均值的层:CenteredLayer类,并将层的计算放在forward函数里, from mxnet import nd, gluon from ...
- 『PyTorch』第三弹重置_Variable对象
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...
- 『TensorFlow』第七弹_保存&载入会话_霸王回马
首更: 由于TensorFlow的奇怪形式,所以载入保存的是sess,把会话中当前激活的变量保存下来,所以必须保证(其他网络也要求这个)保存网络和载入网络的结构一致,且变量名称必须一致,这是caffe ...
- 关于『进击的Markdown』:第四弹
关于『进击的Markdown』:第四弹 建议缩放90%食用 美人鱼(Mermaid)悄悄的来,又悄悄的走,挥一挥匕首,不留一个活口 又是漫漫画图路... 女士们先生们,大家好! 我们要接受Markd ...
- 关于『HTML』:第三弹
关于『HTML』:第三弹 建议缩放90%食用 盼望着, 盼望着, 第三弹来了, HTML基础系列完结了!! 一切都像刚睡醒的样子(包括我), 欣欣然张开了眼(我没有) 敬请期待Markdown语法系列 ...
- 『PyTorch』第十弹_循环神经网络
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...
- 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...
- 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...
随机推荐
- 【Dalston】【第三章】声明式服务调用(Feign)
当我们通过RestTemplate调用其它服务的API时,所需要的参数须在请求的URL中进行拼接,如果参数少的话或许我们还可以忍受,一旦有多个参数的话,这时拼接请求字符串就会效率低下,并且显得好傻.那 ...
- 论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking
Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking 本文目标在于 ...
- 【Ruby】【高级编程】面向对象
# [[面向对象]]#[实例变量]=begin实例变量是类属性,它们在使用类创建对象时就编程对象的属性.每个对象的属性是单独赋值的,和其他对象之间不共享.在类的内部,使用@运算符访问这些属性,在类的外 ...
- 基于 Python 和 Pandas 的数据分析(7) --- Pickling
上一节我们介绍了几种合并数据的方法. 这一节, 我们将重新开始不动产的例子. 在第四节中我们写了如下代码: import Quandl import pandas as pd fiddy_states ...
- 改变input中的placeholder样式
1.input[placeholder]{ color:#d5d5d5; } 2.input::-moz-placeholder { color: #d5d5d5; } input:-ms-input ...
- android 利用CountDownTimer实现时分秒倒计时效果
https://blog.csdn.net/mrzhao_perfectcode/article/details/81289578
- ros 节点关闭后重启
加入参数 respawn="true"
- jmeter学习四配置元件详解
JMeter提供的配置元件中的HTTP属性管理器用于尽可能模拟浏览器行为,在HTTP协议层上发送给被测应用的http请求 1.Http信息头管理器 用于定制Sampler发出的HTTP请求的请求头的内 ...
- 虹软 Android 人脸检测与人脸识别集成分享
目前我们的应用内使用了 ArcFace 的人脸检测功能,其他的我们并不了解,所以这里就和大家分享一下我们的集成过程和一些使用心得 集成ArcFace FD 的集成过程非常简单 在 ArcFace FD ...
- variable_scope
1. with tf.variable_scope("a"): b=tf.get_variable(name="g",initializer=12) print ...