<题目链接>

<转载于  >>> >

首先来了解什么是稳定的凸包。比如有4个点:

这四个点是某个凸包上的部分点,他们连起来后确实还是一个凸包。但是原始的凸包可能不是这样。

比如:

即这四个点构成的凸包不算做“稳定”的。我们发现,当凸包上存在一条边上的点只有端点两个点的时候,这个凸包不是稳定的,因为它可以在这条边外再引入一个点,构成一个新的凸包。但一旦一条边上存在三个点,那么不可能再找到一个点使它扩展成一个新的凸包,否则构成的新多边形将是凹的。

下面是一个典型的稳定凸包:

于是此题的做法就很明确了,就是在给出的点中,找到凸包,并且判断这个凸包是不是每条边至少有三个点。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define eps 1e-8
using namespace std; struct point{
double x,y;
};
point p[],stack[];
int N,top;
double multi(point p1, point p2, point p3){ //向量(p1->p2)^(p1->p3)
return (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x);
}
double dis(point a, point b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
int cmp(const void *a, const void *b){ //按极角排序
point c = *(point *)a;
point d = *(point *)b;
double k = multi(p[], c, d);
if(k < || (!k && dis(c, p[]) > dis(d, p[]))) return ;
return -;
}
void Convex(){ //凸包的构建 Andrew算法
for(int i = ; i < N; i++){ //先按x,y坐标排序,找到原点
point temp;
if(p[i].y < p[].y || ( p[i].y == p[].y && p[i].x < p[].x)){
temp = p[i];
p[i] = p[];
p[] = temp;
}
}
qsort(p + , N - , sizeof(p[]), cmp); //再将除原点以外的点按极角排序
stack[] = p[]; //先将起始的两个点压入栈内,在进行后面的判断
stack[] = p[];
top = ;
for(int i = ; i < N; i++){
while(top >= && multi(stack[top - ], stack[top], p[i]) < )top--; //共线的点也压入凸包内;
top++;
stack[top] = p[i];
}
}
bool judge(){ //这个函数是关键
for(int i=;i<top;i++){
if((multi(stack[i-],stack[i+],stack[i]))!=&&(multi(stack[i],stack[i+],stack[i+]))!=) //判断每条边是否有至少三个点,即判断i-1,i,i+1这三个点是否在一条直线上或者i,i+1,i+2是否在一条直线上
return false;
}
return true;
}
int main(){
int t;
cin>>t;
while(t--){
cin>>N;
for(int i=;i<N;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
if(N<)puts("NO");
else{
Convex();
if(judge())puts("YES");
else puts("NO");
}
}
return ;
}

2018-08-23

POJ 1228 (稳定凸包问题)的更多相关文章

  1. poj 1228 稳定凸包

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12337   Accepted: 3451 ...

  2. Grandpa's Estate - POJ 1228(稳定凸包)

    刚开始看这个题目不知道是什么东东,后面看了大神的题解才知道是稳定凸包问题,什么是稳定凸包呢?所谓稳定就是判断能不能在原有凸包上加点,得到一个更大的凸包,并且这个凸包包含原有凸包上的所有点.知道了这个东 ...

  3. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  4. POJ 1228 Grandpa's Estate 凸包 唯一性

    LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...

  5. 凸包稳定性判断:每条边上是否至少有三点 POJ 1228

    //凸包稳定性判断:每条边上是否至少有三点 // POJ 1228 #include <iostream> #include <cstdio> #include <cst ...

  6. POJ 1228 Grandpa's Estate --深入理解凸包

    题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...

  7. POJ 1228 Grandpa's Estate(凸包)

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11289   Accepted: 3117 ...

  8. ●POJ 1228 Grandpas Estate

    题链: http://poj.org/problem?id=1228 题解: 计算几何,凸包 题意:给出一些点,求出其凸包,问是否是一个稳定的凸包. 稳定凸包:不能通过新加点使得原来凸包上的点(包括原 ...

  9. poj 3348 Cow 凸包面积

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8122   Accepted: 3674 Description ...

随机推荐

  1. CSS进阶之模拟Bootstrap网格布局

    目前暂时实现效果,容后面整理心得,先贴上源代码. 源码 <!DOCTYPE html> <html> <head> <title>demo bootst ...

  2. 出现fonts/fontawesome-webfont.woff?v=4.5.0 net::ERR_ABORTED

    虽然网页正常显示和运行,但是有2个字体文件出现404错误. 原因:服务器没有配置MIME类型而已. 1. 在IIS网站中,找打网站对应的MIME类型,双击. 2.能看到此网站对应的MIME类型,点击右 ...

  3. Sql server 查询某个时间段,分布有几周,几月和几日

    1. 查询:以“周”为单位 --查询以下时间段内分别有几周 --时间段:“2017-09-01”到“2017-10-1” select number as wknum from master..spt ...

  4. python - 包装 和 授权

    包装 # 包装(二次加工标准类型) # 继承 + 派生 的方式实现 定制功能 # 示例: # class list_customization(list): #重新定制append方法,判断添加的数据 ...

  5. Debian 安装配置(包括kdevelop)

    最近几天折腾了一下Debian 7 (gnome桌面DVD版,KDE桌面CD版最后会提到),总的来说收获还是挺大的,对比以前使用ubuntu,debian 7给我的感觉像是一个新生婴儿,不带多余的花俏 ...

  6. [转]SPI通信原理简介

    [转自]http://www.cnblogs.com/deng-tao/p/6004280.html 1.前言 SPI是串行外设接口(Serial Peripheral Interface)的缩写.是 ...

  7. cmake 使用

    1.cmake 显示编译命令: 在顶层CMakeLists.txt里设置 set(CMAKE_VERBOSE_MAKEFILE ON) 或者  cmake .        再           m ...

  8. IIS8.5 运行WCF

    背景 这是一个项目给其它项目提供接口,其实现在哪有用WCF的了,都是restful.不过.net在这方面还是不错,比java强些,java竟然很多采用自己解析xml方式来做Web服务.难以理解. 但是 ...

  9. 004_i686和x86_64的区别

    找回TCL隐藏分区(转载) 用Wubi安装 Ubuntu 出现(Initranfs)问题的解决方案 i686和x86_64的区别 2009-04-11 08:19:31|  分类: 电脑问题 |  标 ...

  10. Ex3_15 判断图是否是一个强连通分量 判断点是否在汇点强连通分量中_十一次作业

    (a) 可以用图中的每一个顶点表示街道中的每个十字路口,由于街道都是单行的,所以图是有向图,若从一个十字路口都有一条合法的路线到另一个十字路口,则图是一个强连通图.即要验证的是图是否是一个强连通图. ...