AGC001 E - BBQ Hard 组合数学
题目链接
题解
考虑\(C(n+m,n)\)的组合意义
从\((0,0)\)走到\((n,m)\)的方案数
从\((x,y)\)走到\((x+n,y+m)\)的方案数
考虑\(C(a_i+b_i+a_j+b_j,a_i+b_i)\)的组合意义
从\((0,0)\)走到\((a_i+a_j,b_i+b_j)\)的方案数
从\((-a_i,-b_i)\)走到\((a_j,b_j)\)的方案数
考虑计算任意\((-a_i,-b_i)\)到任意\((a_i,b_i)\)的方案数
减去从自己到自己的就好了
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define gc getchar()
#define pc putchar
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9') c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f ;
}
void print(int x) {
if(x >= 10 ) print(x / 10);
pc(x % 10 + '0');
}
int n;
const int mod = 1e9 + 7;
inline int fstpow(int x,int k ){
int ret = 1;
for(;k;k >>= 1,x = 1ll * x * x % mod)
if(k & 1) ret = 1ll * ret * x % mod;
return ret;
}
const int maxn = 25001;
int a[200006],b[200007];
int jc[(maxn << 2)],inv[(maxn << 2) + 7];
inline int C(int x,int y) {
return 1ll * jc[x] * inv[y] % mod * inv[x - y]% mod;
}
int main() {
n = read();
int ans = 0;
for(int i = 1;i <= n;++ i) {
a[i] = read(),b[i] = read();
}
for(int i = 1;i < (maxn << 1);++ i)
for(int j = 1;j <= (maxn << 1);++ j)
for(int i = 1;i <= n;++ i) {
}
jc[0] = jc[1] = 1;
for(int i = 2;i < (maxn << 2); ++ i) jc[i] = 1ll * jc[i - 1] * i % mod;
inv[(maxn << 2) - 1] = fstpow(jc[(maxn << 2) - 1],mod - 2);
print(fstpow(jc[500000],mod - 2));
for(int i = (maxn << 2) - 2;i;-- i) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
for(int i = 1;i <= n;++ i) {
ans = ((ans - C(a[i] * 2 + b[i] * 2,a[i] * 2)) % mod + mod) % mod;
}
ans = (1ll * 500000004 * ans) % mod;
print(ans);
return 0;
}
AGC001 E - BBQ Hard 组合数学的更多相关文章
- AGC001 E - BBQ Hard【dp+组合数学】
首先直接按要求列出式子是\( \sum_{i=1}^{n}\sum_{j=i+1}^{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \) 这样显然过不了,因为ab的数据范围比较小,所 ...
- [AGC001 E] BBQ Hard
Description 有\(N(N\leq 200000)\)个数对\((a_i,b_i)(a_i,b_i,\leq 2000)\),求出\(\sum\limits_{i=1}^n\sum\limi ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
- AGC001 E - BBQ Hard [组合数]
这题就是要求 \(\sum_{i=1}^{n} \sum_{j=i+1}^{n} C(a_i+a_j+b_i+b_j,a_i+a_j)\) 考虑搞一搞,\(C(a_i+a_j+b_i+b_j,a_i+ ...
- 【AtCoder】AGC001
AGC001 A - BBQ Easy 从第\(2n - 1\)个隔一个加一下加到1即可 #include <bits/stdc++.h> #define fi first #define ...
- atcoder题目合集(持续更新中)
Choosing Points 数学 Integers on a Tree 构造 Leftmost Ball 计数dp+组合数学 Painting Graphs with AtCoDeer tarja ...
- A*G#C001
AGC001 A BBQ Easy 贪心. https://agc001.contest.atcoder.jp/submissions/7856034 B Mysterious Light 很nb这个 ...
- 【AGC板刷记录】
这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息. 而且白天上课可以做( AGC-001 \(A\ BBQ Easy\) 考虑从小到大排,相邻两个取为一对. BBQ Easy #i ...
- AT1983-[AGC001E]BBQ Hard【dp,组合数学】
正题 题目链接:https://www.luogu.com.cn/problem/AT1983 题目大意 给出\(n\)个数对\((a_i,b_i)\) 求 \[\sum_{i=1}^n\sum_{j ...
随机推荐
- SpringBoot整合国际化功能
(1).编写国际化配置文件 在resources下新建i18n文件夹,并新建以下文件 ①index.properties username=username ②index_en_US.proper ...
- 【Python】JBOSS-JMX-EJB-InvokerServlet批量检测工具
一.说明 在JBoss服务器上部署web应用程序,有很多不同的方式,诸如:JMX Console.Remote Method Invocation(RMI).JMXInvokerServlet.Htt ...
- awk对列/行进行统计求和【转】
场景]--类似于excel中的sum函数对列/行进行统计求和 A01 A02 A03 A09 [要求1]--对列进行统计求和 A01 A02 A03 A09 TOTAL [要求2]--对行进行统计求和 ...
- ES系列十四、ES聚合分析(聚合分析简介、指标聚合、桶聚合)
一.聚合分析简介 1. ES聚合分析是什么? 聚合分析是数据库中重要的功能特性,完成对一个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最大值.最小值,计算和.平均值等.ES作为 ...
- C++经典面试题(最全,面中率最高)
C++经典面试题(最全,面中率最高) 1.new.delete.malloc.free关系 delete会调用对象的析构函数,和new对应free只会释放内存,new调用构造函数.malloc与fre ...
- scn 时间
Scn转换成时间: select to_char(scn_to_timestamp(3998591352171),'YYYY-MM-DD HH24:MI:SS') from dual: 时间转换成sc ...
- js获取iframe中的元素
var obj=document.getElementById("iframe的name").contentWindow; var ifmObj=obj.document.getE ...
- php计算给定时间之前的函数
这里给定一个时间,计算这个时间在多久前,比如:2天前,1年前 function prettyDate($date){ $time = strtotime($date); $now = time(); ...
- NBUT1457
不知道哪里的oj..做了交不上去.. 也是莫队的模板题 #include<iostream> #include<cstring> #include<cstdio> ...
- Python decorator
1.编写无参数的decorator Python的 decorator 本质上就是一个高阶函数,它接收一个函数作为参数,然后,返回一个新函数. 使用 decorator 用Python提供的 @ 语法 ...