AGC001 E - BBQ Hard 组合数学
题目链接
题解
考虑\(C(n+m,n)\)的组合意义
从\((0,0)\)走到\((n,m)\)的方案数
从\((x,y)\)走到\((x+n,y+m)\)的方案数
考虑\(C(a_i+b_i+a_j+b_j,a_i+b_i)\)的组合意义
从\((0,0)\)走到\((a_i+a_j,b_i+b_j)\)的方案数
从\((-a_i,-b_i)\)走到\((a_j,b_j)\)的方案数
考虑计算任意\((-a_i,-b_i)\)到任意\((a_i,b_i)\)的方案数
减去从自己到自己的就好了
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define gc getchar()
#define pc putchar
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9') c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f ;
}
void print(int x) {
if(x >= 10 ) print(x / 10);
pc(x % 10 + '0');
}
int n;
const int mod = 1e9 + 7;
inline int fstpow(int x,int k ){
int ret = 1;
for(;k;k >>= 1,x = 1ll * x * x % mod)
if(k & 1) ret = 1ll * ret * x % mod;
return ret;
}
const int maxn = 25001;
int a[200006],b[200007];
int jc[(maxn << 2)],inv[(maxn << 2) + 7];
inline int C(int x,int y) {
return 1ll * jc[x] * inv[y] % mod * inv[x - y]% mod;
}
int main() {
n = read();
int ans = 0;
for(int i = 1;i <= n;++ i) {
a[i] = read(),b[i] = read();
}
for(int i = 1;i < (maxn << 1);++ i)
for(int j = 1;j <= (maxn << 1);++ j)
for(int i = 1;i <= n;++ i) {
}
jc[0] = jc[1] = 1;
for(int i = 2;i < (maxn << 2); ++ i) jc[i] = 1ll * jc[i - 1] * i % mod;
inv[(maxn << 2) - 1] = fstpow(jc[(maxn << 2) - 1],mod - 2);
print(fstpow(jc[500000],mod - 2));
for(int i = (maxn << 2) - 2;i;-- i) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
for(int i = 1;i <= n;++ i) {
ans = ((ans - C(a[i] * 2 + b[i] * 2,a[i] * 2)) % mod + mod) % mod;
}
ans = (1ll * 500000004 * ans) % mod;
print(ans);
return 0;
}
AGC001 E - BBQ Hard 组合数学的更多相关文章
- AGC001 E - BBQ Hard【dp+组合数学】
首先直接按要求列出式子是\( \sum_{i=1}^{n}\sum_{j=i+1}^{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \) 这样显然过不了,因为ab的数据范围比较小,所 ...
- [AGC001 E] BBQ Hard
Description 有\(N(N\leq 200000)\)个数对\((a_i,b_i)(a_i,b_i,\leq 2000)\),求出\(\sum\limits_{i=1}^n\sum\limi ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
- AGC001 E - BBQ Hard [组合数]
这题就是要求 \(\sum_{i=1}^{n} \sum_{j=i+1}^{n} C(a_i+a_j+b_i+b_j,a_i+a_j)\) 考虑搞一搞,\(C(a_i+a_j+b_i+b_j,a_i+ ...
- 【AtCoder】AGC001
AGC001 A - BBQ Easy 从第\(2n - 1\)个隔一个加一下加到1即可 #include <bits/stdc++.h> #define fi first #define ...
- atcoder题目合集(持续更新中)
Choosing Points 数学 Integers on a Tree 构造 Leftmost Ball 计数dp+组合数学 Painting Graphs with AtCoDeer tarja ...
- A*G#C001
AGC001 A BBQ Easy 贪心. https://agc001.contest.atcoder.jp/submissions/7856034 B Mysterious Light 很nb这个 ...
- 【AGC板刷记录】
这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息. 而且白天上课可以做( AGC-001 \(A\ BBQ Easy\) 考虑从小到大排,相邻两个取为一对. BBQ Easy #i ...
- AT1983-[AGC001E]BBQ Hard【dp,组合数学】
正题 题目链接:https://www.luogu.com.cn/problem/AT1983 题目大意 给出\(n\)个数对\((a_i,b_i)\) 求 \[\sum_{i=1}^n\sum_{j ...
随机推荐
- Jetson tk1 hash sum mismatch
sudo apt-get update遭遇Hash Sum Mismatch 修改DNS服务器地址: sudo gedit /etc/resolv.conf 解决办法: 在装有goagent的情况下: ...
- Linux的capability深入分析(2)【转】
转自:https://blog.csdn.net/wangpengqi/article/details/9821231 rpm -ql libcap-2.16-5.2.el6.i686 /lib/l ...
- 福利爬虫妹子图之获取种子url
import os import uuid from lxml import html import aiofiles import logging from ruia import Spider, ...
- 基于python的k-s值计算
做评分卡模型时(假设有多个自变量,因变量即是否违约.)通常需要筛选变量. k-s值的作用类似于AUC,它期初是用来评价模型(变量)对是否违约事件的区分程度的. # -*- coding: utf-8 ...
- bert中的分词
直接把自己的工作文档导入的,由于是在外企工作,所以都是英文写的 chinese and english tokens result input: "我爱中国",tokens:[&q ...
- C#控制台中创建数据库连接
与数据库的连接主要有以下三种类: sqlconnection:数据库连接类: sqlcommand:数据库操作: sqldatareader:数据库读取: SqlDataReader dr = cmd ...
- Oracle数据库错误大全
ORA-00001: 违反唯一约束条件 (.)ORA-00017: 请求会话以设置跟踪事件ORA-00018: 超出最大会话数ORA-00019: 超出最大会话许可数ORA-00020: 超出最大进程 ...
- ocp linux 基础要点
基本命令: 创建/修改/删除用户 useradd/usermod/userdel 创建/修改/删除用户组 groupadd/groupmod/groupdel 修改所属用户/所属用户 ...
- 追求极致--纯css制作三角、圆形按钮,兼容ie6
参考了天猫.微博等网站的做法,用纯html和css实现,效果还是不错的.以下是成果,兼容主流浏览器,包括ie6. <!DOCTYPE html PUBLIC "-//W3C//DTD ...
- TStringList 复制 赋值。
方法1:list2.addstrings(list1) 特点是:不会清空list2中原有的数据. 方法2:list2.assign(list1) 特点是:会清空list2中原有的数据(直接替换链表节点 ...