题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式

分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1)

然后对于这种递推式,也就是dp[i]等于前j个dp数组和a数组的卷积,然后可看所有的

一看n是1e5,所以暴力超时,然后采用cdq分治加速,这种卷积递推通常采用cdq分治加速

cdq的话很简单了,就是先递归左边,算左对右的贡献,递归右边就行,一半一半更新

#include <cstdio>
#include <vector>
#include <stack>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5+;
const int mod = ;
typedef long long LL;
const double pi = acos(-1.0);
int a[N],dp[N],n;
struct complex{
double r,i;
complex(double R=,double I=){
r=R;i=I;
}
complex operator+(const complex &a)const{
return complex(r+a.r,i+a.i);
}
complex operator-(const complex &a)const{
return complex(r-a.r,i-a.i);
}
complex operator*(const complex &a)const{
return complex(r*a.r-i*a.i,r*a.i+i*a.r);
}
}x[N*],y[N*];
void change(complex x[],int len){
int i,j,k;
for(i=,j=len/;i<len-;++i){
if(i<j)swap(x[i],x[j]);
k=len/;
while(j>=k){j-=k;k>>=;}
if(j<k)j+=k;
}
}
void fft(complex x[],int len,int on){
change(x,len);
for(int i=;i<=len;i<<=){
complex wn(cos(-on**pi/i),sin(-on**pi/i));
for(int j=;j<len;j+=i){
complex w(,);
for(int k=j;k<j+i/;++k){
complex u = x[k];
complex t = w*x[k+i/];
x[k]=u+t;
x[k+i/]=u-t;
w=w*wn;
}
}
}
if(on==-)for(int i=;i<len;++i)x[i].r/=len;
}
void up(int &x){
x%=mod;
}
void cdq(int l,int r){
if(l==r){dp[l]+=a[l];up(dp[l]);return;}
int mid=l+r>>;
cdq(l,mid);
int len=;
while(len<=(r-l+))len<<=;
for(int i=;i<len;++i)x[i]=y[i]=complex(,);
for(int i=l;i<=mid;++i)x[i-l]=complex(dp[i],);
for(int i=;i<=r-l+;++i)y[i-]=complex(a[i],);
fft(x,len,);fft(y,len,);
for(int i=;i<len;++i)x[i]=x[i]*y[i];
fft(x,len,-);
for(int i=mid+;i<=r;++i)
dp[i]+=(int)(x[i-l-].r+0.5),up(dp[i]);
cdq(mid+,r);
}
int main(){
while(~scanf("%d",&n),n){
for(int i=;i<=n;++i){
scanf("%d",&a[i]);up(a[i]);dp[i]=;
}
cdq(,n);
printf("%d\n",dp[n]);
}
return ;
}

HDU 5730 Shell Necklace cdq分治+FFT的更多相关文章

  1. HDU Shell Necklace CDQ分治+FFT

    Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in ...

  2. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  3. HDU 5730 Shell Necklace(CDQ分治+FFT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...

  4. hdu 5730 Shell Necklace fft+cdq分治

    题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会 ...

  5. HDU.5730.Shell Necklace(分治FFT)

    题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(31 ...

  6. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  7. hdu5730 Shell Necklace 【分治fft】

    题目 简述: 有一段长度为n的贝壳,将其划分为若干段,给出划分为每种长度的方案数,问有多少种划分方案 题解 设\(f[i]\)表示长度为\(i\)时的方案数 不难得dp方程: \[f[i] = \su ...

  8. #8 //HDU 5730 Shell Necklace(CDQ分治+FFT)

    Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转 ...

  9. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

随机推荐

  1. WPF / Win Form:多线程去修改或访问UI线程数据的方法( winform 跨线程访问UI控件 )

    WPF:谈谈各种多线程去修改或访问UI线程数据的方法http://www.cnblogs.com/mgen/archive/2012/03/10/2389509.html 子线程非法访问UI线程的数据 ...

  2. PKUSC 模拟赛 题解_UPD

    之前挖了两个大坑 一个是day1下午的第二题 另一个是day2上午的第五题 先说day1下午的第二题吧 我们显然不能O(n^2)的dp,所以我们只能算贡献 首先对于任意一个边界点而言,他对答案的贡献路 ...

  3. 心情记录&考试总结 3.30

    并不知道现在要干什么,本人像是一只大颓狗 Em..怎么说呢,今天考完了一场奇怪的试 准确的说,画风很不正常的试 第一题集体爆零 第二题暴力20分 第三题暴力40分,乱搞有加成 改题的话, 第一题有奇怪 ...

  4. lintcode 中等题:Majority number II 主元素 II

    题目 主元素II 给定一个整型数组,找到主元素,它在数组中的出现次数严格大于数组元素个数的三分之一. 样例 给出数组[1,2,1,2,1,3,3] 返回 1 注意 数组中只有唯一的主元素 挑战 要求时 ...

  5. leetcode:两个数的和||

    两个数的和|| 给定一个排序数组,求出其中两个数的和等于指定target时,这两个数在原始数组中的下标,返回的下标从1开始 解题 原始数组已经是升序的,找出其中两个数的和等于target 定义两个指针 ...

  6. 机器学习第三课(EM算法和高斯混合模型)

    极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一.说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值. ...

  7. 用static关键字修饰类

    Java里面static一般用来修饰成员变量或函数.但有一种特殊用法是用static修饰内部类,普通类是不允许声明为静态的,只有内部类才可以.被static修饰的内部类可以直接作为一个普通类来使用,而 ...

  8. WCF揭秘(一)——简单的WCF开发实例

    一.WCF是什么 WCF是微软为了实现各个开发平台之间的无疑缝连接而开发一种崭新工具,它是为分布式处理而开发.WCF将DCOM.Remoting.Web Service.WSE.MSMQ.AJAX服务 ...

  9. java--面向接口编程

    之前看的一本书的笔记,上周再看设计模式的时候,想到了这篇之前在看某本书时候的笔记. 面向接口编程很重要的一点就是接口回调,用接口声明的变量称作接口变量,属于引用型变量,可以存放实现该接口的类的实例的引 ...

  10. 自定义View(1)简单流程及示例模板

    1,继承View , ViewGroup,或TextView等等 2,绘制相关的api, canvas 画布, paint 画笔 2,重写重要的函数(注意这个顺序) onMeasure 属于View的 ...