机器学习真的可以起作用吗?(3)(以二维PLA为例)
前两篇文章已经完成了大部分的工作,这篇文章主要是讲VC bound和 VC dimension这两个概念。
(一)前文的一点补充
根据前面的讨论,我们似乎只需要用来替代来源的M就可以了,但是实际公式却不是这样的,我们需要数学上处理几个小细节。具体的处理方法不讲,只提供大体思路。
可以看出,真实情况下,公式中多了3个参数。
这三个参数是怎么来的?
(1)我们无法计算Eout,所以我们另外采样N个数据,用它来计算E'in,代替Eout,这对于固定的一个h是可行的。
(2)现在我们就变成了取2N个点了
(3)使用Hoffding定理
(4)最终结论称之为VC bound
注意:整个证明过程中没有具体到PLA算法,也即这个过程对所有的机器学习算法都适用。
(二)VC Dimension
定义breakpoint –1 为VC dimension。表示为dvc
可以证明对于PLA算法:dvc(H)=d+1 (d为w的维度)。
其物理意义是是自由度。这一点非常重要,让我们可以直观地认识一个hypothesis set的dvc 。
(三)VC bound的两种解释。
(1)Penalty for Model Complexity
根据上述的关系,可以得出如下结论:
这里的一个重要结论是:一般情况下,最好的选择一般不会出现在Ein最小的地方。
(2)Sample Complexity。
dvc可以提供给我们关于D大小的信息。
可以看出,当δ,ε,dvc确定的时候,我们就基本可以确定样本量N的大小。
为什么理论上N≈10000dvc,实际上通常使用10dvc呢?因为我们得到的这个理论值非常宽松!为什么这么宽松呢?四条理由。
机器学习真的可以起作用吗?(3)(以二维PLA为例)的更多相关文章
- 机器学习真的可以起作用吗?(2)(以二维PLA算法为例)
一个问题:大多数情况下,M(hypothesis set的大小)是无穷大的,例如PLA算法.那么是不是我们的原则1就不能使用了? 我们试着做一些努力: Step1:寻找hypothesis set的e ...
- paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...
- [机器学习]-[数据预处理]-中心化 缩放 KNN(二)
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果 正例 反例 正例 TP 真 ...
- 学机器学习,不会数据处理怎么行?—— 二、Pandas详解
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...
- 机器学习:PCA(高维数据映射为低维数据 封装&调用)
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. ...
- 机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA
本文转自:自己的微信公众号<集成电路设计及EDA教程> <机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA> AOCV AOCV全称:Advanced OCV ...
- 【Python机器学习实战】决策树和集成学习(二)——决策树的实现
摘要:上一节对决策树的基本原理进行了梳理,本节主要根据其原理做一个逻辑的实现,然后调用sklearn的包实现决策树分类. 这里主要是对分类树的决策进行实现,算法采用ID3,即以信息增益作为划分标准进行 ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- PRML读书会第一章 Introduction(机器学习基本概念、学习理论、模型选择、维灾等)
主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂 ...
随机推荐
- jquery通过ajax-json访问java后台传递参数,通过request.getParameter获取不到参数的说明
http://m.blog.csdn.net/blog/eyebrother/36007145 所以当后台通过request.getParameter("name");对参数值的作 ...
- 进程内核栈、用户栈及 Linux 进程栈和线程栈的区别
Linux 进程栈和线程栈的区别 http://www.cnblogs.com/luosongchao/p/3680312.html 总结:线程栈的空间开辟在所属进程的堆区,线程与其所属的进程共享进程 ...
- 49. Anagrams
题目: Given an array of strings, return all groups of strings that are anagrams. Note: All inputs will ...
- Ossec常用命令
启动并查看httpd服务 systemctl start httpd systemctl status httpd.service 启动并查看mysql服务 systemctl start maria ...
- JS代码片段:appendHTML 和 insertAdjacentHTML
function appendHTML(container,html,position){ position =position || 'after'; var objE = document.cre ...
- OpenCV在Android平台上的应用
今年8月份, OpenCV 2.3.1发布了. 虽然从2.2开始, OpenCV就号称支持Android平台, 但真正能让OpenCV在Android上运行起来还是在2.3.1版本上. 在这个版本上, ...
- 车牌识别LPR(四)-- 车牌定位
第四篇:车牌定位 车牌定位就是采用一系列图像处理或者数学的方法从一幅图像中将车牌准确地定位出来.车牌定位提取出的车牌是整个车牌识别系统的数据来源,它的效果的好坏直接影响到整个系统的表现,只有准确地定位 ...
- 20-语言入门-20-Financial Management
题目地址: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=72 描述Larry graduated this year and fina ...
- Java连接oracle数据库的OCI和THIN
使用jdbc连接上oracle有两种方法: 1. 使用thin连接 由于thin驱动都是纯Java代码,并且使用TCP/IP技术通过java的Socket连接上Oracle数据库,所以thin驱动是与 ...
- asp.net中Session过期设置方法
在Asp.net应用中,很多人会遇到Session过期设置有冲突.其中,可以有四处设置Session的过期时间: 一.全局网站(即服务器)级 IIS-网站-属性-Asp.net-编辑配置-状态管理-会 ...