机器学习真的可以起作用吗?(3)(以二维PLA为例)
前两篇文章已经完成了大部分的工作,这篇文章主要是讲VC bound和 VC dimension这两个概念。
(一)前文的一点补充
根据前面的讨论,我们似乎只需要用来替代来源的M就可以了,但是实际公式却不是这样的,我们需要数学上处理几个小细节。具体的处理方法不讲,只提供大体思路。
可以看出,真实情况下,公式中多了3个参数。
这三个参数是怎么来的?
(1)我们无法计算Eout,所以我们另外采样N个数据,用它来计算E'in,代替Eout,这对于固定的一个h是可行的。
(2)现在我们就变成了取2N个点了
(3)使用Hoffding定理
(4)最终结论称之为VC bound
注意:整个证明过程中没有具体到PLA算法,也即这个过程对所有的机器学习算法都适用。
(二)VC Dimension
定义breakpoint –1 为VC dimension。表示为dvc
可以证明对于PLA算法:dvc(H)=d+1 (d为w的维度)。
其物理意义是是自由度。这一点非常重要,让我们可以直观地认识一个hypothesis set的dvc 。
(三)VC bound的两种解释。
(1)Penalty for Model Complexity
根据上述的关系,可以得出如下结论:
这里的一个重要结论是:一般情况下,最好的选择一般不会出现在Ein最小的地方。
(2)Sample Complexity。
dvc可以提供给我们关于D大小的信息。
可以看出,当δ,ε,dvc确定的时候,我们就基本可以确定样本量N的大小。
为什么理论上N≈10000dvc,实际上通常使用10dvc呢?因为我们得到的这个理论值非常宽松!为什么这么宽松呢?四条理由。
机器学习真的可以起作用吗?(3)(以二维PLA为例)的更多相关文章
- 机器学习真的可以起作用吗?(2)(以二维PLA算法为例)
一个问题:大多数情况下,M(hypothesis set的大小)是无穷大的,例如PLA算法.那么是不是我们的原则1就不能使用了? 我们试着做一些努力: Step1:寻找hypothesis set的e ...
- paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...
- [机器学习]-[数据预处理]-中心化 缩放 KNN(二)
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果 正例 反例 正例 TP 真 ...
- 学机器学习,不会数据处理怎么行?—— 二、Pandas详解
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...
- 机器学习:PCA(高维数据映射为低维数据 封装&调用)
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. ...
- 机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA
本文转自:自己的微信公众号<集成电路设计及EDA教程> <机器学习在IC设计中的应用(二)--根据GBA时序结果来预测PBA> AOCV AOCV全称:Advanced OCV ...
- 【Python机器学习实战】决策树和集成学习(二)——决策树的实现
摘要:上一节对决策树的基本原理进行了梳理,本节主要根据其原理做一个逻辑的实现,然后调用sklearn的包实现决策树分类. 这里主要是对分类树的决策进行实现,算法采用ID3,即以信息增益作为划分标准进行 ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- PRML读书会第一章 Introduction(机器学习基本概念、学习理论、模型选择、维灾等)
主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂 ...
随机推荐
- log4j的基本配置参数
转载:http://blog.csdn.net/fengyifei11228/article/details/6070006 log4j配置文件有三个主要的组件:Logger,Appender和Lay ...
- eclipse 中忽略jsp, xml文件中的报错信息
有的时候, 在eclipse中, jsp, xml 文件时运行的好好的, 可是就是在eclipse中报错, 虽然不影响功能, 但看起来很烦, 去掉这些错误警告的方法是: Windows-Prefere ...
- 对原生态jdbc程序中问题总结
import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; import ...
- OAuth2.0和SSO授权的区别
OAuth2.0和SSO授权 一.OAuth2.0授权协议 一种安全的登陆协议,用户提交的账户密码不提交到本APP,而是提交到授权服务器,待服务器确认后,返回本APP一个访问令牌,本APP即可用该 ...
- Save output to a text file from Mac terminal
Simply with output redirection: system_profiler > file.txt Basically, this will take the output ...
- 你用哪种工具进行iOS app自动化功能测试?
原文见http://www.cocoachina.com/applenews/devnews/2013/1111/7332.html
- 配置hibernate根据实体类自动建表功能
Hibernate支持自动建表,在开发阶段很方便,可以保证hbm与数据库表结构的自动同步. 如何使用呢?很简单,只要在hibernate.cfg.xml里加上如下代码 Xml代码<propert ...
- 对于oracle监听器的配置
oracle 的 net configuration assist中配置完第一项的监听程序配置(对应文件listener.ora)之后,还要重新配置下第三项本地网络服务名配置(对应文件tnsname ...
- 函数xdes_get_offset
/********************************************************************//** Returns page offset of the ...
- bzoj2823
最小圆覆盖 有个东西叫作随机增量法,具体可以baidu 这里来说说怎么求三点共圆 这其实就是求两条线段的交点 在编程中,我们解方程是比较麻烦的一个比较好的方法是利用相似三角形 设线段AB,CD交P,则 ...