There are certain things to care while implementing the Jasper Reports for huge dataset to handle the memory efficiently, so that the appliacation does not go out of memory.

They are:

1) Pagination of the data and use of JRDataSource,

2) Viruatization of the report.

When there is a huge dataset, it is not a good idea to retrieve all the data at one time.The application will hog up the memory and you’re application will go out of memory even before coming to the jasper report engine to fill up the data.To avoid that, the service layer/Db layer should return the data in pages and you gather the data in chunks and return the records in the chunks using JRDataSource interface, when the records are over in the current chunk, get the next chunk untilall the chunks gets over.When I meant JRDataSource, do not go for the Collection datasources, you implement the JRDataSource interface and provide the data through next() and getFieldValue()To provide an example, I just took the “virtualizer” example from the jasperReports sampleand modified a bit to demonstrate for this article.To know how to implement the JRDataSource, Have a look at the inner class “InnerDS” in the example.

Even after returning the data in chunks, finally the report has to be a single file.Jasper engine build the JasperPrint object for this. To avoid the piling up of memory at this stage, JasperReports provided a really cool feature called Virtualizer. Virtualizer basically serializes and writes the pages into file system to avoid the out of memory condition. There are 3 types of Virtualizer out there as of now. They are JRFileVirtualizer, JRSwapFileVirtualizer, and JRGzipVirtualizer.JRFileVirtualizer is a really simple virtualizer, where you need to mention the number of pages to keep in memory and the directory in which the Jasper Engine can swap the excess pages into files. Disadvantage with this Virtualizer is file handling overhead. This Virtualizer creates so many files during the process of virtualization and finally produces the required report file from those files.If the dataset is not that large, then you can go far JRFileVirtualizer.The second Virtualizer is JRSwapFileVirtualizer, which overcomes the disadvantage of JRFileVirtualizer. JRSwapFileVirtualizer creates only one swap file,which can be extended based on the size you specify. You have to specify the directory to swap, initial file size in number of blocks and the extension size for the JRSwapFile. Then while creating the JRSwapFileVirtualizer, provide the JRSwapFile as a parameter, and the number of pages to keep in memory. This Virtualizer is the best fit for the huge dataset.The Third Virtualizer is a special virtualizer which does not write the data into files, instead it compresses the jasper print object using the Gzip algorithm and reduces the memory consumption in the heap memory.The Ultimate Guide of JasperReports says that JRGzipVirtualizer can reduce the memory consumption by 1/10th. If you are dataset is not that big for sure and if you want to avoid the file I/O, you can go for JRGzipVirtualizer.

Check the sample to know more about the coding part. To keep it simple, I have reused the “virtualizer” sample and added the JRDataSource implementation with paging.I ran the sample that I have attached here for four scenarios. To tighten the limits to get the real effects, I ran the application with 10 MB as the max heap size (-Xmx10M).

1a) No Virtualizer, which ended up in out of memory with 10MB max heap size limit.

export:
[java] Exception in thread “main” java.lang.OutOfMemoryError: Java heap space
[java] Java Result: 1

1b) No Virtualizer with default heap size limit (64M)

export2:
[java] null
[java] Filling time : 44547
[java] PDF creation time : 22109
[java] XML creation time : 10157
[java] HTML creation time : 12281
[java] CSV creation time : 2078

2) 2) With JRFileVirtualizer 
exportFV:
[java] Filling time : 161170
[java] PDF creation time : 38355
[java] XML creation time : 14483
[java] HTML creation time : 17935
[java] CSV creation time : 5812

3) With JRSwapFileVirtualizer
exportSFV:
[java] Filling time : 51879
[java] PDF creation time : 32501
[java] XML creation time : 14405
[java] HTML creation time : 16579
[java] CSV creation time : 5365

4a) With GZipVirtualizer with lots of GC
exportGZV:
[java] Filling time : 84062
[java] Exception in thread “RMI TCP Connection(22)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “RMI TCP Connection(24)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “main” java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “RMI TCP Connection(25)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “RMI TCP Connection(27)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Java Result: 1

4b) With GZipVirtualizer (max: 13MB)
exportGZV2:
[java] Filling time : 59297
[java] PDF creation time : 35594
[java] XML creation time : 16969
[java] HTML creation time : 19468
[java] CSV creation time : 10313

I have shared the updated virtualizer sample files at Updated Virtualizer Sample files

Generating Huge reports in JasperReports的更多相关文章

  1. (转) [it-ebooks]电子书列表

    [it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...

  2. systemtap 2.8 news

    * What's new in version 2.8, 2015-06-17 - SystemTap has improved support for probing golang programs ...

  3. JasperReport html 导出

    In my last blog post I discussed about Generating jasper reports in different formats using json fil ...

  4. 【RDA】使用RDA(Remote Diagnostic Agent)工具对数据库进行健康检查

    [RDA]使用RDA(Remote Diagnostic Agent)工具对数据库进行健康检查 分类: Linux RDA英文全称叫做"Oracle Remote Diagnostic Ag ...

  5. 转载:《TypeScript 中文入门教程》 4、类

    版权 文章转载自:https://github.com/zhongsp 建议您直接跳转到上面的网址查看最新版本. 介绍 传统的JavaScript程序使用函数和基于原型的继承来创建可重用的组件,但这对 ...

  6. Summary of Amazon Marketplace Web Service

    Overview Here I want to summarize Amazon marketplace web service (MWS or AMWS) that can be used for ...

  7. ORACLE AWR概述及生成AWR报告

    1.Overview of the Automatic Workload Repository The Automatic Workload Repository (AWR) collects, pr ...

  8. TypeScript学习笔记之类

    TypeScript的类,简单地定义如下: class Person { x: number; // 默认为public类型 y: number; constructor(x1: number, y1 ...

  9. 负载,性能测试工具-Gatling

    前言 Gatling Gatling是一款功能强大的负载测试工具,它为易于使用,高可维护性和高性能而设计. 开箱即用,Gatling由于对HTTP协议的出色支持,使其成为负载测试任何HTTP服务器的首 ...

随机推荐

  1. web安全实战

    前言 本章将主要介绍使用Node.js开发web应用可能面临的安全问题,读者通过阅读本章可以了解web安全的基本概念,并且通过各种防御措施抵御一些常规的恶意攻击,搭建一个安全的web站点. 在学习本章 ...

  2. Stored Procedures with Multiple Result Sets

    Stored Procedures with Multiple Result Sets https://msdn.microsoft.com/en-us/data/jj691402.aspx

  3. C#中String类的几个方法(IndexOf、LastIndexOf、Substring)

    String.IndexOf String.IndexOf 方法 (Char, Int32, Int32)报告指定字符在此实例中的第一个匹配项的索引.搜索从指定字符位置开始,并检查指定数量的字符位置. ...

  4. GIS初学者

    学习编程一直以来没有什么好的思路,感觉就是学了忘,忘了再重复,效率特别低下.大概是从大三第一学期才有意识的转向c#的学习,来熟悉VS2010平台,在这之前我都不知道自己是怎么学习的. 大一第二学期开的 ...

  5. 学习C++ Primer 的个人理解(一)

    <C++ Primer>这本书可以说是公认的学习C++最好的书,但我觉得不是特别适合作为教材,书中内容的顺序让人有些蛋疼.我个人认为初学此书是不能跳着看的.如果急于上手的话,我更推荐< ...

  6. SQLite学习心得

    SQLite是一款很有名气的小型开源跨平台数据库,作为目前最流行的开源嵌入式关系型数据库,在系统结构设计中正在扮演着越来越重要的角色. 本文主要沿着 http://www.cppblog.com/we ...

  7. spring heibernate 调用存储过程

    一:参考网址 http://sunbin123.iteye.com/blog/1007556 二:示例 @Autowired @Qualifier("jdbcTemplate") ...

  8. oracle pl/sql的操作大全

    --删除该用户及下面的所有关联 DROP USER fspdrs CASCADE; --创建一个用户 create user fspdrs identified " default tabl ...

  9. Knockout.js 初探

    Knockout.js是什么? Knockout是一款很优秀的JavaScript库,它可以帮助你仅使用一个清晰整洁的底层数据模型(data model)即可创建一个富文本且具有良好的显示和编辑功能的 ...

  10. 使用VS时点右键卡住—不响应的问题

    以前因为论坛,后来因为工作,发现已经好久没有来百度空间了.也好久没人留言或发表评论了,今天自己更新一下吧. 关于使用VS时点右键卡住或不响应的问题,我是在VS 2008中遇到的,不知道其它的版本有没有 ...