bzoj2561: 最小生成树
如果出现在最小生成树上,那么此时比该边权值小的边无法连通uv。据此跑最小割(最大流)即可。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define rep(i,n) for(int i=1;i<=n;i++)
#define clr(x,c) memset(x,c,sizeof(x))
int read(){
int x=0;char c=getchar();bool f=true;
while(!isdigit(c)) {
if(c=='-') f=false;c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return f?x:-x;
}
const int nmax=20005;
const int maxn=200005;
const int inf=0x7f7f7f7f;
struct Edge{
int from,to,cap;
bool operator<(const Edge&rhs)const{
return cap<rhs.cap;}
};
Edge Edges[maxn];
struct edge{
int to,cap;edge *next,*rev;
};
edge edges[maxn<<2],*pt,*head[nmax],*p[nmax],*cur[nmax];
void add(int u,int v,int d){
pt->to=v;pt->cap=d;pt->next=head[u];head[u]=pt++;
}
void adde(int u,int v,int d){
add(u,v,d);add(v,u,0);head[u]->rev=head[v];head[v]->rev=head[u];
}
int cnt[nmax],h[nmax];
int maxflow(int s,int t,int n){
clr(cnt,0);clr(h,0);cnt[0]=n;
int flow=0,a=inf,x=s;edge *e;
while(h[s]<n){
for(e=cur[x];e;e=e->next) if(e->cap>0&&h[e->to]+1==h[x]) break;
if(e){
p[e->to]=cur[x]=e;a=min(a,e->cap);x=e->to;
if(x==t){
while(x!=s) p[x]->rev->cap+=a,p[x]->cap-=a,x=p[x]->rev->to;
flow+=a,a=inf;
}
}else{
if(!--cnt[h[x]]) break;
h[x]=n;
for(e=head[x];e;e=e->next) if(e->cap>0&&h[e->to]+1<h[x]) h[x]=h[e->to]+1,cur[x]=e;
cnt[h[x]]++;
if(x!=s) x=p[x]->rev->to;
}
}
return flow;
}
int main(){
int n=read(),m=read(),s,t,d;
rep(i,m) Edges[i].from=read(),Edges[i].to=read(),Edges[i].cap=read();
s=read(),t=read(),d=read();
sort(Edges+1,Edges+m+1);
// rep(i,m) printf("%d %d %d\n",Edges[i].from,Edges[i].to,Edges[i].cap);
pt=edges;clr(head,0);
rep(i,m){
if(Edges[i].cap>=d) break;
Edge&o=Edges[i];adde(o.from,o.to,1);adde(o.to,o.from,1);
}
int ans=maxflow(s,t,n);
pt=edges;clr(head,0);
for(int i=m;i;i--){
if(Edges[i].cap<=d) break;
Edge&o=Edges[i];adde(o.from,o.to,1);adde(o.to,o.from,1);
}
ans+=maxflow(s,t,n);
printf("%d\n",ans);
return 0;
}
2561: 最小生成树
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1459 Solved: 716
[Submit][Status][Discuss]
Description
给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?
Input
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。
Output
输出一行一个整数表示最少需要删掉的边的数量。
Sample Input
3 2 1
1 2 3
1 2 2
Sample Output
HINT
对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;
对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;
对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。
Source
bzoj2561: 最小生成树的更多相关文章
- bzoj2561最小生成树
bzoj2561最小生成树 题意: 给定一个连通无向图,假设现在加入一条边权为L的边(u,v),求需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上. 题解: 最 ...
- BZOJ2561 最小生成树(最小割)
考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...
- [bzoj2561]最小生成树_网络流_最小割_最小生成树
最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- bzoj千题计划322:bzoj2561: 最小生成树(最小割)
https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...
- BZOJ2561 最小生成树 【最小割】
题目 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多 ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
- 【bzoj2561】最小生成树 网络流最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- 【bzoj2561】最小生成树
嗯……这题是一个网络流. 加入的边为u,v长度L 则所有长度大于L的边不能使得u,v连通 求个最小割即可.小于同理 两次最小割结果相加. #include<bits/stdc++.h> # ...
随机推荐
- Android 开发 res里面的drawable(ldpi、mdpi、hdpi、xhdpi、xxhdpi)
(1)drawable-hdpi里面存放高分辨率的图片,如WVGA (480x800),FWVGA (480x854) (2)drawable-mdpi里面存放中等分辨率的图片,如HVGA (320x ...
- java文件操作(输出目录、查看磁盘符)
问题描述: java操作文件,所有硬盘中所有文件路径 问题解决: (1)查看所有磁盘文件 注: 如上所示,使用接口 File.listRoots()可以返回所有磁盘文件,通过f ...
- 30个实用的Linux find命令示例
除了在一个目录结构下查找文件这种基本的操作,你还可以用find命令实现一些实用的操作,使你的命令行之旅更加简易. 本文将介绍15种无论是于新手还是老鸟都非常有用的Linux find命令. 首先,在你 ...
- [BC]BestCoder Round#86小结
1001 [题意] 给定一个长度为n(n<=100000)的正整数序列,给出m(m<=100000)个子集合和的记录,问哪些一定比正确的记录多了 [题解] 对正整数序列求和,记录比和大的一 ...
- [错误]试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)
错误原因: dll文件是在64位机下编译的,而服务器是32位机,所以无法调用 或者dll文件是在64位开发环境下下编译的,而现在的调用程序是的32位,所以无法调用 注意项目属性:
- iOS开发之深入探讨runtime机制02-runtime的简单使用
runtime机制为我们提供了一系列的方法让我们可以在程序运行时动态修改类.对象中的所有属性.方法. 下面就介绍运行时一种很常见的使用方式,字典转模型.当然,你可能会说,“我用KVO直接 setVal ...
- VS2010字体设置+推荐字体
字体的设置在工具->选项->环境->字体和颜色. 相信大家在用VS2010的时候都会觉得默认的字体不是很好看,尤其是看的时间长了以后,更是累眼睛,这里推荐一个字体,个人感觉像是加粗加 ...
- jQuery1.9.1源码分析--Ajax模块
//Serialize an array of form elements or a set of //key/values into a query string // 将数组形式的表单元素或者哈希 ...
- html添加keyword,description帮助百度收录处理方法,jsp去除空白行方法
1.将网页的title,keyword,description写成include包含文件,例如: top.jsp <%@ page language="java" conte ...
- Openstack Grizzily 单节点测试机安装( All In One CentOS/RHEL)
Openstack Grizzily版本已经相当完善,根据官方文档安装基本不存在什么问题,但是想快速测试了解Openstack功能的用户非常多,devstack的安 装需要check最新的代码,时常碰 ...