3887 - Slim Span
Time limit: 3.000 seconds

Given an undirected weighted graph G <tex2html_verbatim_mark>, you should find one of spanning trees specified as follows.

The graph G <tex2html_verbatim_mark>is an ordered pair (VE) <tex2html_verbatim_mark>, where V <tex2html_verbatim_mark>is a set of vertices {v1v2,..., vn} <tex2html_verbatim_mark>and E <tex2html_verbatim_mark>is a set of undirected edges {e1e2,..., em} <tex2html_verbatim_mark>. Each edge e  E <tex2html_verbatim_mark>has its weight w(e) <tex2html_verbatim_mark>.

A spanning tree T <tex2html_verbatim_mark>is a tree (a connected subgraph without cycles) which connects all the n <tex2html_verbatim_mark>vertices with n - 1 <tex2html_verbatim_mark>edges. The slimness of a spanning tree T <tex2html_verbatim_mark>is defined as the difference between the largest weight and the smallest weight among the n - 1 <tex2html_verbatim_mark>edges of T <tex2html_verbatim_mark>.

<tex2html_verbatim_mark>

For example, a graph G <tex2html_verbatim_mark>in Figure 5(a) has four vertices {v1v2v3v4} <tex2html_verbatim_mark>and five undirected edges {e1e2,e3e4e5} <tex2html_verbatim_mark>. The weights of the edges are w(e1) = 3 <tex2html_verbatim_mark>, w(e2) = 5 <tex2html_verbatim_mark>, w(e3) = 6 <tex2html_verbatim_mark>, w(e4) = 6 <tex2html_verbatim_mark>, w(e5) = 7 <tex2html_verbatim_mark>as shown in Figure 5(b).

=6in <tex2html_verbatim_mark>

There are several spanning trees for G <tex2html_verbatim_mark>. Four of them are depicted in Figure 6(a)∼(d). The spanning tree Ta<tex2html_verbatim_mark>in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta <tex2html_verbatim_mark>is 4. The slimnesses of spanning trees Tb <tex2html_verbatim_mark>, Tc <tex2html_verbatim_mark>and Td <tex2html_verbatim_mark>shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td <tex2html_verbatim_mark>in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n <tex2html_verbatim_mark>m <tex2html_verbatim_mark>
a1 <tex2html_verbatim_mark>b1 <tex2html_verbatim_mark>w1 <tex2html_verbatim_mark>
 <tex2html_verbatim_mark>
am <tex2html_verbatim_mark>bm <tex2html_verbatim_mark>wm <tex2html_verbatim_mark>

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space.

n <tex2html_verbatim_mark>is the number of the vertices and m <tex2html_verbatim_mark>the number of the edges. You can assume 2n100 <tex2html_verbatim_mark>and 0mn(n - 1)/2<tex2html_verbatim_mark>. ak <tex2html_verbatim_mark>and bk <tex2html_verbatim_mark>(k = 1,..., m) <tex2html_verbatim_mark>are positive integers less than or equal to n <tex2html_verbatim_mark>, which represent the two verticesvak <tex2html_verbatim_mark>and vbk <tex2html_verbatim_mark>connected by the k <tex2html_verbatim_mark>-th edge ek <tex2html_verbatim_mark>. wk <tex2html_verbatim_mark>is a positive integer less than or equal to 10000, which indicates the weight of ek <tex2html_verbatim_mark>. You can assume that the graph G = (VE) <tex2html_verbatim_mark>is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, `-1' should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50 枚举最小边,求得MST
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
#define INF 0x3f3f3f3f
#define N 110
#define M 100010 struct Edge
{
int u,v,w;
bool operator <(const Edge &t)const
{
return w<t.w;
}
}edge[M]; int n,m;
int f[N]; void init()
{
for(int i=;i<=n;i++) f[i]=i;
}
int Find(int x)
{
if(x!=f[x]) f[x]=Find(f[x]);
return f[x];
}
bool UN(int x,int y)
{
x=Find(x);
y=Find(y);
if(x==y) return ;
f[x]=y;
return ;
}
int kruskal(int s)
{
init();
int ret;
for(int i=s;i<=m;i++)
{
if(UN(edge[i].u,edge[i].v)) ret=edge[i].w;
}
int cnt=;
for(int i=;i<=n;i++) if(f[i]==i) cnt++;
if(cnt>) return -;
return ret;
}
int main()
{
int ans;
while(scanf("%d%d",&n,&m),n||m)
{
ans=INF;
for(int i=;i<=m;i++) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge+,edge+m+);
for(int i=;i<=m;i++)
{
int t=kruskal(i);
if(t==-) break;
ans=min(ans,t-edge[i].w);
}
if(ans==INF) ans=-;
printf("%d\n",ans);
}
return ;
}

[LA 3887] Slim Span的更多相关文章

  1. LA 3887 - Slim Span 枚举+MST

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  2. uvalive 3887 Slim Span

    题意: 一棵生成树的苗条度被定义为最长边与最小边的差. 给出一个图,求其中生成树的最小苗条度. 思路: 最开始想用二分,始终想不到二分终止的条件,所以尝试暴力枚举最小边的长度,然后就AC了. 粗略估计 ...

  3. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  6. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  7. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

  8. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  9. UVALive-3887 Slim Span (kruskal)

    题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的 ...

随机推荐

  1. Linux 命令整理 —— 用户管理

    Linux用户管理以读.写.执行动作为权限,以用户组为单位,限制用户行为.对于文件的的操作,可以限制读.写.执行中的哪一种,也可以限制文件所有者.组用户.组外用户相应的权限. 所以,要建立用户,最好先 ...

  2. [转载]C#中的WebBrowser控件的使用

    http://www.cnblogs.com/txw1958/archive/2012/09/24/CSharp-WebBrowser.html

  3. Codeforces Round #363 (Div. 2)->A. Launch of Collider

    A. Launch of Collider time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  4. 手把手VirtualBox虚拟机下安装rhel6.4 linux 64位系统详细文档

    下面演示安装的是在VirtualBox里安装rhel 6.4 linux 64位系统. 一.VirtualBOX 版本. 二.虚拟机的配置. 1.现在开始演示安装,一起从零开始.点击“新建”,创建新的 ...

  5. linux 线程的内核栈是独立的还是共享父进程的?

    需要考证 考证结果: 其内核栈是独立的 206 static struct task_struct *dup_task_struct(struct task_struct *orig) 207 { 2 ...

  6. Nhibernate

    Nhibernate入门与demo 学习和使用Nhibernate已经很久了,一直想写点东西和大家一起学习使用Nhibernate.博客园里也有很多大牛写了很多关于Nhibernate入门的文章.其中 ...

  7. Hibernate逍遥游记-第13章 映射实体关联关系-001用外键映射一对一(<many-to-one unique="true">、<one-to-one>)

    1. <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hi ...

  8. 电容值E系列标称方法

    本节首先介绍常用的E系列标称方法,然后介绍电阻.电容器.电感器.二极管的分类.性能和识别方法,以及简单的实用电路. 一.E系列标称方法 厂家生产的电阻器,并不是包含任何阻值,就像人民币,只有1.2.5 ...

  9. python 利用smtp发送邮件,html格式

    def send_mail(to_list, sub, context):#sentmail to the maillist ''' to_list: 发送给谁 sub: 主题 context: 内容 ...

  10. Android:Context的作用

    Context字面意思上下文,Activity中我们直接用this代替,而到了一个button的onClick(View view)等方法时,我们用this时就会报错,改用ActivityName.t ...