(转载)有关反演和gcd
tips :
积性函数 F (n) = Π F (piai )
若F (n), G (n)是积性函数则
F (n) * G (n)
Σd | n F (n)
是积性函数
n = Σd | n φ (d)
1 = Σd | n μ (d)
Σgcd (i, n) = 1 i = n * φ (n) / 2
Problem1
F (n) = Σ1<= i <= n gcd(i, n), n <= 1000000
Sol
枚举结果
F (n) = Σd | n d * Σgcd (i, n) = d 1
F (n) = Σd | n d * Σgcd (i / d, n / d) = 1 1
F (n) = Σd | n d * Σgcd (i / d, n / d) = 1 1
F (n) = Σd | n d * φ (n / d)
单次计算O (sqrt N)
筛法O (N)
Problem 2
F (n) = Σ1<= i <= n gcd (i, n), n <= 2147483647 (POJ longge's problem)
Sol
由P1可知F (n)是积性函数 因此考虑计算F (pk)
由P1 易知
F (pk) = p * F (pk - 1) + (p - 1)pk - 1
单个F(n)可以O (sqrt N)时间有他的质因子分解计算得到
Problem 3
F (n) = Σ1<= i <= n lcm(i, n), n <= 1000000 (SPOJ LCMSUM)
显而易见的变形
F (n) = Σ1<= i <= n i * n / gcd (i, n)
F (n) =Σd | n Σgcd (i, n) = d i * n / d
F (n) =Σd | n n / d * Σgcd (i, n) = d i
F (n) =Σd | n n / d * Σgcd (i / d, n / d) = 1 i
F (n) =Σd | n n / d * d * Σgcd (i / d, n / d) = 1 i / d
令j = i / d
F (n) =Σd | n n * Σgcd (j, n / d) = 1 j
由Σgcd (i, n) = 1 i = n * φ (n) / 2
F (n) =Σd | n n * (n / d) * φ (n / d) / 2
F (n) =n * Σd | n (n / d) * φ (n / d) / 2
F (n) =n / 2 * Σd | n d * φ (d)
筛出 Σd | n d * φ (d) O (N)-O(1)
Problem 4
F (n) = Σ1<= i <= n Σ1<= j <= n gcd (i, j) n <= 1000000 (SPOJ GCDEX)
Sol
G (n) = Σd | n d * φ (n / d)
F (n) = Σ1<= i <= n G (i)
筛出G (i) 前缀和
Problem 5
求F (n, m) = [n / d] * [m / d]
Sol
研究退化情况 m = 1 F (n) = [n / d]
共有sqrt n种不同取值
F (n, m) = [n / d] * [m / d]
共有sqrt n + sqrt m种不同取值 归并这两种取值
Problem 6
多组询问n, m 求F (n, m) = Σ1<= i <= n Σ1<= j <= m gcd (i, j)
Sol
F (n, m) = Σ1<= i <= n Σ1<= j <= m Σ d | gcd (i, j) φ (d)
F (n, m) = Σ d φ (d) Σ1<= i <= n d | i Σ1<= j <= m d | j 1
F (n, m) = Σ d φ (d) * [n / d] * [m / d]
可以经P5解决
Problem 6
多组询问n, m 求F (n, m) = Σ1<= i <= n Σ1<= j <= m gcd (i, j) = 1 1
Sol
F (n, m) = Σ1<= i <= n Σ1<= j <= m Σ d | gcd (i, j) μ (d)
F (n, m) = Σ d μ (d) Σ1<= i <= n d | i Σ1<= j <= m d | j 1
F (n, m) = Σ d μ (d) * [n / d] * [m / d]
可以经P5解决
Problem 7
F (n, m) = Σ1<= i <= n Σ1<= j <= m Σ gcd (i, j) <- prime 1 (BZOJ YY的GCD)
Sol
F (n, m) = Σ1<= i <= n Σ1<= j <= m Σ gcd (i, j) <- prime 1
F (n, m) = Σ1<= i <= n Σ1<= j <= m Σ p <- prime gcd (i, j) = p 1
F (n, m) = Σ p <- prime Σ1<= i <= n Σ1<= j <= m gcd (i, j) = p 1
F (n, m) = Σ p <- prime Σ1<= i <= n / p Σ1<= j <= m / p gcd (n / p, m / p) = 1 1
可以经P6解决
(转载)有关反演和gcd的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 数学:莫比乌斯反演-GCD计数
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...
- ZOJ 3435 Ideal Puzzle Bobble 莫比乌斯反演
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下 ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- NOI2010能量采集(数论)
没想到NOI竟然还有这种数学题,看来要好好学数论了…… 网上的题解: 完整的结题报告: 首先我们需要知道一个知识,对于坐标系第一象限任意的整点(即横纵坐标均为整数的点)p(n,m),其与原点o(0,0 ...
- OI题目类型总结整理
## 本蒟蒻的小整理qwq--持续更新(咕咕咕) 数据结构 数据结构 知识点梳理 数据结构--线段树 推荐yyb dalao的总结--戳我 以后维护线段树还是把l,r写到struct里面吧,也别写le ...
- loj2000[SDOI2017]数字表格
题意:f为Fibnacci数列.求$\prod_{1<=i<=n,1<=j<=m} f[gcd(i,j)]$. n,m<=1e6. 标程: #include<bit ...
- 莫比乌斯反演学习笔记(转载自An_Account大佬)
转载自An_Account大佬 提示:别用莫比乌斯反演公式,会炸的 只需要记住: [gcd(i,j)=1]=∑d∣gcd(i,j)μ(d)[gcd(i,j)=1]=\sum_{d|gcd(i,j)}\ ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
随机推荐
- Kinetic使用注意点--lable
new Lable(config) 参数: config:包含所有配置项的对象. { x: "横坐标", y: "纵坐标", width: "宽度&q ...
- iOS:横向使用iPhone默认的翻页效果
大致思路使用两层辅助UIView的旋转来实现添加后的View的横向翻页效果 CATransform3D transformA = CATransform3DRotate(CATransform3DId ...
- iOS 基础 第三天(0807)
0807 成员变量作用域###### 如下图所示: 这里要注意手写的成员变量/实例变量默认的作用域是private,所以外部指针类型的对象无法直接访问,这起到一定的保护作用.但可以在当前类内部@imp ...
- chm文件打开,有目录没有内容
下载下来的一些chm文件,打开的是否提示“打开此文件前总是询问”,不理睬直接打开后,只有目录,页面内容都显示“已取消到本页的导航”.原因是该CHM文件的发行商未知,将“打开此文件前总是询问”选项取消后 ...
- java程序练习:数组中随机10个数中的最大值
//定义输入:其实是一个可以保存10个整数的数组 //使用循环遍历,生成10个随机数,放入每个元素中//打桩,数组中的内容 //定义输出变量 //将数组中第一个元素取出,保存在max中,当靶子 //遍 ...
- 20130729--Samba的学习
(一).基本概念 samba是一个能让你的Unix计算机和其它MS Windows计算机相互共享资源的软件. samba提供有关资源共享的三个功能,包括:smbd,执行它可以使Unix能够共享资源给其 ...
- How To Monitor Remote Linux Host using Nagios 3.0
In the previous post Nagios 3.0 Jumpstart guide , I explained the overview, installation and configu ...
- VS2005 VS2008 Manifest 配置问题总结
一.问题 编译某个遗留工程后,运行程序时报错,“由于应用程序的配置不正确,应用程序无法启动.重新安装应用程序可能会解决这个问题.” 查看生成的Manifest文件如下: <?xml versio ...
- hdu 4558 剑侠情缘
思路:dp[i][j][k]表示在点(i,j)处能量的差值为k的方案数 转移的时候把差值取相反数就实现轮流了 代码如下: #include<iostream> #include<st ...
- MVC 国内架构设计
http://www.cnblogs.com/guomingfeng/p/mvc-ef-query.html http://www.cnblogs.com/haogj/p/3127795.html