其实这题一看知道应该是DP,再一看数据范围肯定就是单调队列了。

不过我还不太懂神马单调队列、斜率优化……

附上天牛的题解:http://www.cnblogs.com/neverforget/archive/2012/04/19/2456483.html

 var f,g:array[..] of int64;
s,q:array[..] of longint;
a,b,c,n,i,h,t,x:longint;
bestk:double;
procedure init;
begin
readln(n);
readln(a,b,c);
s[]:=;
for i:= to n do
begin
read(x);
s[i]:=s[i-]+x;
end;
end;
function k(x,y:longint):double;
begin
exit(double(g[y]-g[x])/(s[y]-s[x]));
end;
procedure main;
begin
f[]:=;h:=;t:=;q[]:=;
for i:= to n do
begin
bestk:=double(*a*s[i]);
while (h<t) and (k(q[h],q[h+])>=bestk) do inc(h);
f[i]:=int64(f[q[h]])+int64(a)*int64(s[i]-s[q[h]])*int64(s[i]-s[q[h]])
+int64(b)*int64(s[i]-s[q[h]])+int64(c);
g[i]:=int64(f[i])+int64(a)*int64(s[i])*int64(s[i])-int64(b)*int64(s[i]);
while (h+<=t) and (k(q[t],i)>k(q[t-],q[t])) do dec(t);
inc(t);
q[t]:=i;
end;
end;
procedure print;
begin
writeln(f[n]);
end;
begin
init;
main;
print;
end.

APIO2010特别行动队(单调队列、斜率优化)的更多相关文章

  1. [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】

    题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...

  2. 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)

    bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...

  3. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  4. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  5. DP单调队列--斜率优化P3195

    题意:https://www.luogu.com.cn/problem/P3195 思路:https://www.luogu.com.cn/problemnew/solution/P3195 #def ...

  6. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  7. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  8. P3628 [APIO2010]特别行动队(斜率优化dp)

    P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...

  9. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  10. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

随机推荐

  1. Python: tkinter实例改名小工具

    #!/usr/bin/env python #coding=utf-8 # # 版权所有 2014 yao_yu (http://blog.csdn.net/yao_yu_126) # 本代码以MIT ...

  2. 关于python多线程编程中join()和setDaemon()的一点儿探究

    关于python多线程编程中join()和setDaemon()的用法,这两天我看网上的资料看得头晕脑涨也没看懂,干脆就做一个实验来看看吧. 首先是编写实验的基础代码,创建一个名为MyThread的  ...

  3. MySQL Connector Net连接vs2012问题

    最近做一.NET项目,数据库用到MySQL,可是在VS2012连接数据库是遇到问题,提示:Authentication with old password no longer supported, u ...

  4. 【转】How to view word document in WPF application

    How to view word document in WPF application (CSVSTOViewWordInWPF) Introduction The Sample demonstra ...

  5. NGUI系列教程十(Scroll View实现触摸滚动相册效果)

    NGUI中提供了两种Scroll View 一种是通过手指或鼠标滑动视图时移动平面物体,另一种则是直接移动摄像机,他们各有各的好处.但是NGUI提供的Scroll View很难实现类似Android ...

  6. 【BZOJ 2878】 [Noi2012]迷失游乐园

    Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环( ...

  7. Impala入门笔记

    From:http://tech.uc.cn/?p=817 问题背景: 初步了解Impala的应用 重点测试Impala的查询速度是否真的如传说中的比Hive快3~30倍 写作目的: 了解Impala ...

  8. storyboard 总结

    1.storyboard 布局时用代码实现页面跳转: a> 获取当前 storyboard : [self storyboard] b> 为将要跳转到的 viewController 添加 ...

  9. Hibernate简介2

    一.主配置 ◆查询缓存,同下面讲的缓存不太一样,它是针对HQL语句的缓存,即完全一样的语句再次执行时可以利用缓存数据.但是,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反 ...

  10. js原生代码编写一个鼠标在页面移动坐标的检测功能,兼容各大浏览器

    function mousePosition(e) {     //IE9以上的浏览器获取     if (e.pageX || e.pageY) {         return {         ...