【BZOJ】1013: [JSOI2008]球形空间产生器sphere
【BZOJ】1013: [JSOI2008]球形空间产生器sphere
题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标;
思路:高斯消元即第i个点和第i+1个点处理出一个式子,这样n+1个点正好有n个系数的n元变量,即可求解。
式子:Σ( (a[i][j] - x[j])^2 ) = Σ( a[i+1][j] - x[j])^2 )
=> Σ( x[j]*[2*(a[i+1][j]-a[i][j])] ) = Σ(a[i+1][j]*a[i+1][j] - a[i][j]*a[i][j]);直接预处理即可;
注意:在Gauss处理出上三角阵的过程中,每次要选出主对角线绝对值最大的行作为参考行,貌似是精度问题。还有就是归零的过程中,要变成参考行再消,为了不出现除0的情况。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
using namespace std;
typedef long long ll;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
double a[][],A[][];
int n;
void Gauss()
{
int i,j,k;
rep1(i,,n){
int mx = i;
rep1(j,i+,n) if(fabs(A[mx][i]) < fabs(A[j][i])) mx = j;
rep1(j,i,n+) swap(A[mx][j],A[i][j]);
rep1(j,i+,n)if(A[i][i] != ){
double y = A[j][i]/A[i][i];
rep1(k,i,n+) A[j][k] -= y*A[i][k];
}
}
for(int i = n;i >= ;i--){
rep1(j,i+,n) A[i][n+] -= A[i][j] * A[j][n+];
A[i][n+] /= A[i][i]; //化为系数为1;保证有解,则A[i][i] != 0;
}
}
int main()
{
int i,j;
scanf("%d",&n);
rep1(i,,n+)
rep1(j,,n)
scanf("%lf",&a[i][j]);
rep1(i,,n)
rep1(j,,n){
A[i][j] = *(a[i+][j] - a[i][j]);
A[i][n+] += a[i+][j]*a[i+][j] - a[i][j]*a[i][j];
}
Gauss();
printf("%.3f",A[][n+]);
rep1(i,,n) printf(" %.3f",A[i][n+]);
}
【BZOJ】1013: [JSOI2008]球形空间产生器sphere的更多相关文章
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
- bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3584 Solved: 1863[Subm ...
- BZOJ 1013 [JSOI2008]球形空间产生器sphere
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3074 Solved: 1614[Subm ...
- 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...
- bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】
n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3) 因为圆上各点到圆心的距离相同,于是可以列出距离方程 \[ (a1-x)^2 ...
- [BZOJ 1013] [JSOI2008]球形空间产生器
[BZOJ 1013] [JSOI2008]球形空间产生器 题面 给出一个n维球体上的n+1个点,求球心坐标 分析 设球心坐标为\((x_1,x_2,\dots x_n)\),由于一个球体上的所有点到 ...
- 【BZOJ 1013】球形空间产生器sphere(高斯消元)
球形空间产生器sphere HYSBZ - 1013 (高斯消元) 原题地址 题意 给出n维的球上的n个点,问原球体球心. 提示 n维球体上两点距离公式\(dist = \sqrt{ (a1-b1)^ ...
- 【BZOJ】1013 [JSOI2008]球形空间产生器sphere(高斯消元)
题目 传送门:QWQ 分析 高斯消元就是个大暴力.... 代码 #include <bits/stdc++.h> using namespace std; ; ; int n; doubl ...
- 1013: [JSOI2008]球形空间产生器sphere
很直观的一个gauss题: 用的是以前用过的一个模板: #include<cstdio> #include<algorithm> #include<cmath> # ...
随机推荐
- Views
Views Views are the visual side of the Nova, they are the HTML output of the pages. Views can be loc ...
- C# 之 AES加密源码
using System; using System.Collections.Generic; using System.Linq; using System.Web; using Exam.Encr ...
- 用java程序模拟网站的登录以及文件批量上传
import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.List; ...
- Android_menu_SubMenu
menu.xml <menu xmlns:android="http://schemas.android.com/apk/res/android" > <!-- ...
- Elasticsearch template(待续...)
动态模板 Dynamic templates allow you to define custom mappings that can be applied to dynamically added ...
- 简单的jquery选择器的实现
function getByClass(oParent,oClass){ if(document.getElementsByClassName){ return document ...
- 初步接触html心得
接触HTML大概有七天,做一下小总结,过过记忆. html大致可分为三部分:Dtd头.Head.Body三大部分. Dtd头:是用于浏览器编辑的,也就是俗话说的给电脑看的的东西. Head:内细分下大 ...
- 【转】ArrayList的toArray,也就是list.toArray[new String[list.size()]];,即List转为数组
[转]ArrayList的toArray ArrayList提供了一个将List转为数组的一个非常方便的方法toArray.toArray有两个重载的方法: 1.list.toArray(); 2.l ...
- 基于spark实现表的join操作
1. 自连接 假设存在如下文件: [root@bluejoe0 ~]# cat categories.csv 1,生活用品,0 2,数码用品,1 3,手机,2 4,华为Mate7,3 每一行的格式为: ...
- 优雅的实现Activiti动态调整流程(自由跳转、前进、后退、分裂、前加签、后加签等),含范例代码!
最近对Activiti做了一些深入的研究,对Activiti的流程机制有了些理解,对动态调整流程也有了一些实践方法. 现在好好总结一下,一来是对这段时间自己辛苦探索的一个记录,二来也是为后来者指指路~ ...