题意:

  给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U 。若存在输出yes,否则no。

思路:

  能够得到的是一堆不等式,那么可以用最短路来解决差分约束系统。但是a[i][j]*ai/bj<=U是除的,得提前变成减的才行。可以用对数log来解决,先不管a[i][j],logai-logbj<=U不就行了?可以得到:

  (1)logai - logbj<=U/a[i][j]       (注:这里已经是浮点型了)

  (2)logbj - logai<=-L/a[i][j]

根据这个来建图即可,值得注意的是,点是log(x),而不是x,只有n+m个点。

但是起点呢?不妨以随便以一个点r作为起点,置cost[r]=0,其他INF,来进行最短路,我们只需要对其判断是否有负环即可。

 //#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <map>
#include <iostream>
#include <deque>
#include <vector>
#define INF 0x7f7f7f7f
#define pii pair<int,int>
#define LL unsigned long long
using namespace std;
const int N=;
struct node
{
int from,to;
double cost;
node(){};
node(int from,int to,double cost):from(from),to(to),cost(cost){};
}edge[N*N];
vector<int> vect[N];
int edge_cnt; void add_node(int from,int to,double cost)
{
edge[edge_cnt]=node(from,to,cost);
vect[from].push_back(edge_cnt++);
} double cost[N];
int cnt[N];
bool inq[N];
int spfa(int up)
{
memset(inq, , sizeof(inq));
memset(cost, 0x7f, sizeof(cost));
cost[]=;
deque<int> que(,);//随便以1作为起点 while(!que.empty())
{
int x=que.front();que.pop_front();
inq[x]=;
for(int i=; i<vect[x].size(); i++)
{
node e=edge[vect[x][i]];
if(cost[e.to]>cost[x]+e.cost)
{
cost[e.to]=cost[x]+e.cost;
if(!inq[e.to])
{
inq[e.to]=;
if(++cnt[e.to]>up) return false;
if(!que.empty()&&cost[e.to]<cost[que.front()])
que.push_front(e.to);//一个优化
else
que.push_back(e.to);
}
}
}
}
return true;
} int main()
{
freopen("input.txt", "r", stdin);
int n, m, a, b, c, L, U;
double g; while(~scanf("%d %d %d %d", &n, &m, &L, &U))
{
edge_cnt=;
memset(edge,,sizeof(edge));
for(int i=; i<=n+m; i++) vect[i].clear(); //a1~an编号为1~n,b1~bn编号为n+1~n+m
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%lf",&g);
add_node(i, n+j, -L/g);
add_node(n+j, i, U/g);
}
}
if( spfa(n+m) ) puts("YES");
else puts("NO");
}
return ;
}

AC代码

HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)的更多相关文章

  1. HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...

  2. HDU 3666.THE MATRIX PROBLEM 差分约束系统

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  5. HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  6. hduTHE MATRIX PROBLEM(差分约束)

    题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...

  7. hdu 3666 THE MATRIX PROBLEM

    差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...

  8. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. POJ 3159 Candies(差分约束+最短路)题解

    题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...

随机推荐

  1. (转)Eclipse平台技术概述

    转载:周金根 http://zhoujg.blog.51cto.com/1281471/516833    Eclipse:Eclipse平台技术概述 2010-10-19 13:35:00 标签:E ...

  2. POJ 1936

    #include<iostream> #include<string> using namespace std; int main() { //freopen("ac ...

  3. 2014多校第三场1005 || HDU 4891 The Great Pan(模拟)

    题目链接 题意 : 给你n行字符串,问你有多少种理解方式.有两大类的理解 (1){A|B|C|D|...}代表着理解方式可以是A,可以是B或C或者D. (2)$blah blah$,在$$这两个符号中 ...

  4. listview优化 汇总

    1,listview加载性能优化ViewHolder 转自: http://blog.csdn.net/jacman/article/details/7087995 在android开发中Listvi ...

  5. lintcode:移动零

    题目 给一个数组 nums 写一个函数将 0 移动到数组的最后面,非零元素保持原数组的顺序 注意事项 1.必须在原数组上操作2.最小化操作数   样例 给出 nums = [0, 1, 0, 3, 1 ...

  6. Java多线程-线程的调度(合并)

    线程的合并的含义就是将几个并行线程的线程合并为一个单线程执行,应用场景是当一个线程必须等待另一个线程执行完毕才能执行时可以使用join方法. join为非静态方法,定义如下:void join(): ...

  7. Spring MVC配置DispatcherServlet的url-pattern

    在配置Spring MVC的核心过滤器DispatcherServlet的url-pattern时是有要求的. <servlet> <servlet-name>...</ ...

  8. wrong number of arguments,java方法反射时数组参数的坑

    java方法中只有一个参数是数组,反射的时候我们不能想当然的传歌数组进去,传数组进去的时候表示多个参数. 两个数组不是一个意思啊. 我们应该把数组转为objet,这样才表示一个参数. import j ...

  9. 在VS2010中使用Git(转)

    在之前的一片博客<Windows 下使用Git管理Github项目>中简单介绍了在Windows环境中使用Git管理Github项目,但是是使用命令行来进行操作的,本文将简单介绍下在VS2 ...

  10. 【转】Java中==、equals、hashcode的区别与重写equals以及hashcode方法实例

    原文地址:http://www.cnblogs.com/luankun0214/p/4421770.html 感谢网友的分享,记录下来只为学习. 1.重写equals方法实例   部分代码参考http ...