#include "pbdata.h"
 
uint8_t TxBuffer1[] = "USART Interrupt Example: This isUSART1 DEMO";  
uint8_t RxBuffer1[],rec_f,tx_flag;
volatile uint8_t TxCounter1 = 0x00;
volatile uint8_t RxCounter1 = 0x00;
 
uint32_t Rec_Len;
int main(void)
{
   u8 a=0;
   RCC_Configuration();   
       NVIC_Configuration();   
      GPIO_Configuration();           
      USART_Config(USART1);        
           while(1)
           {
                 
                      if(rec_f==1)
                            {                                                                    
                            rec_f=0;
 
                            USART_OUT(USART1,&TxBuffer1[0]);
                            if(a==0){GPIO_SetBits(GPIOA, GPIO_Pin_2); a=1;}                    
                            else{GPIO_ResetBits(GPIOA, GPIO_Pin_2);a=0; }
 
                        }
           }
}
这是主函数部分,在主函数中只有几个函数的初始化,还有就是定义的数组和标志位。
在一般的串口历程中大家会看到的就是定义一个缓冲区,将接收到的串口数据通过串口中断存放到缓冲区中然后在发送到串口中,但是在接收字符串的时候就要用到逐位发送,新手自己有些不了程序,所以只能一直处于蒙着的状态。其实个人感觉整点原子的程序写的真的挺好的,建议新手开始学习的时候看他的程序,有的人就是不喜欢他写程序的风格,这个因人而异,在这里只是建议一下。原子的串口就给出了字符串就收的历程,但是用这个历程的时候结尾必须要是0d   0a结尾的也就是空格和回车。
在这了给出一个自己定义的头和尾的串口程序。
  串口接收字符串的原理和接收单字符的差不多,只是在接收的时候定义的缓冲区是一个数组,将接受到的数据存放到数组中,在从数组中读出想要的十六进制数在主程序中调用。
以上的主函数中定义个几个数组
uint8_t TxBuffer1[] = "USART Interrupt Example: This isUSART1 DEMO";  
uint8_t RxBuffer1[],rec_f,tx_flag;
volatile uint8_t TxCounter1 = 0x00;
volatile uint8_t RxCounter1 = 0x00;
第一个是发送的缓冲区数组,将接受的数据放到这里发送到串口。
第二个是接收缓冲区的数组,将接受回来的数据放到这里面。
下面两个是定义的变量,因为接收的时候是逐个位就收的所以接收以为就要将地址加一位存放到数组中,否则就会出现发送的数据直接受到一位的现象,应为由于地址没有加1所以导致数据被覆盖掉了。
在主函数中有几个调用的函数,就是串口初始化的函数,
          RCC_Configuration();   
       NVIC_Configuration();   
      GPIO_Configuration();           
      USART_Config(USART1);   
首先是   RCC_Configuration();函数
由于是我自己写的模板所以喜欢讲所有的时钟都放到一个函数中。这个根据个人喜好而定。
voidRCC_Configuration(void)
{
   SystemInit();
      RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
       RCC_APB2PeriphClockCmd( RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB
                           |RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO , ENABLE);  
}
NVIC_Configuration();中断向量配置,如果没有需要串口抢占的直接默认优先级就好
voidNVIC_Configuration(void)
{
 
  NVIC_InitTypeDef NVIC_InitStructure;
/* Configure the NVIC Preemption Priority Bits*/  
  /* Configure one bit for preemption priority*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);         
NVIC_InitStructure.NVIC_IRQChannel= USART1_IRQn;                        
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;         
  NVIC_InitStructure.NVIC_IRQChannelSubPriority= 0;                     
  NVIC_InitStructure.NVIC_IRQChannelCmd =ENABLE;                     
  NVIC_Init(&NVIC_InitStructure);
}
GPIO_Configuration();这个是一个led灯的配置,功能是发送数据时单片机成功接收后会出现电平反转,也就是亮灭变化。同时串口的IO口初始化也在这里。
voidGPIO_Configuration(void)
{
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;                           
  GPIO_InitStructure.GPIO_Mode =GPIO_Mode_Out_PP;              
  GPIO_InitStructure.GPIO_Speed =GPIO_Speed_50MHz;
  GPIO_Init(GPIOA, &GPIO_InitStructure);                           
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;                 
  GPIO_InitStructure.GPIO_Mode =GPIO_Mode_AF_PP;            
  GPIO_Init(GPIOA, &GPIO_InitStructure);                        
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;               
  GPIO_InitStructure.GPIO_Mode =GPIO_Mode_IN_FLOATING;         
  GPIO_Init(GPIOA, &GPIO_InitStructure);               
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;                     
  GPIO_InitStructure.GPIO_Speed =GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  GPIO_Init(GPIOD, &GPIO_InitStructure);
  GPIO_ResetBits(GPIOD, GPIO_Pin_13);                          
}
USART_Config(USART1);   最后就是串口配置了。
voidUSART_Config(USART_TypeDef* USARTx)
{
      
  USART_InitStructure.USART_BaudRate = 9600;                        
  USART_InitStructure.USART_WordLength =USART_WordLength_8b;
  USART_InitStructure.USART_StopBits =USART_StopBits_1;            
  USART_InitStructure.USART_Parity =USART_Parity_No;                  
  USART_InitStructure.USART_HardwareFlowControl= USART_HardwareFlowControl_None;
  USART_InitStructure.USART_Mode =USART_Mode_Rx | USART_Mode_Tx;   
 
  /* Configure USART1 */
  USART_Init(USARTx, &USART_InitStructure);                           
   /* Enable USART1 Receive and Transmitinterrupts */
  USART_ITConfig(USART1, USART_IT_RXNE,ENABLE);                    
  USART_ITConfig(USART1, USART_IT_TXE, ENABLE);                           
 
  /* Enable the USART1 */
  USART_Cmd(USART1, ENABLE);     
}
这些都是固定的东西按照手册配置就行,不过多废话了,主要的部分是在中断函数中
extern uint8_tTxBuffer1[];
extern uint8_tTxBuffer2[];
extern uint8_tRxBuffer1[];
extern uint8_tRxBuffer2[];
extern volatileuint8_t RxCounter1;
extern volatileuint8_t RxCounter2;
 
extern uint8_trec_f,tx_flag;
以上用到的是extern的定义,目的是在外部函数中可以调用。下面是串口函数的编写。
我直接将注释打到语句的后面,在最后又源程序,可下载调试。
voidUSART1_IRQHandler(void)
{
    unsigned int i;//定义一个变量,在后面以为用
  if(USART_GetITStatus(USART1, USART_IT_RXNE)!= RESET)        
  { //如果产生串口中断
   
    RxBuffer1[RxCounter1++] =USART_ReceiveData(USART1);   //将中断的数据存放在定义的缓冲区中同时数组的地址自加。
      
   if(RxBuffer1[0]==0xEE&&RxBuffer1[1]==0xB1&&RxBuffer1[2]==0x11
                 &&RxBuffer1[RxCounter1-4]==0xff&&RxBuffer1[RxCounter1-3]==0xfc
                 &&RxBuffer1[RxCounter1-2]==0xff&&RxBuffer1[RxCounter1-1]==0xff)   //这里判断接收数据的头和尾,可自己定义。  RxBuffer1[0]代表数字的第一个数。
    {
                 if(RxBuffer1[6]==0x04)
                 {
                      for(i=0; i< RxCounter1;i++)
                            TxBuffer1 = RxBuffer1;      
                      rec_f=1;//这个是定义的标志位在主函数中判断。如果置位说明接到数据了。                                                                                    
                      TxBuffer1[RxCounter1]=0;                                               
                      RxCounter1=0;
                 }
    }
  }
以上就是全部程序,程序的主要功能就是在串口发送一串定义好的头和尾时单片机接收到数据发送给串口,同时led亮灭一次。

 

stm32的串口接收字符串以十六进制数的更多相关文章

  1. STM32 ucosii 串口接收数据 遇到的问题及解决思路

    写一个程序,用到了ucos ii ,串口在中断中接收数据(一包数据 8个字节 包含: 1byte包头 5byte数据 1byte校验和 1byte 包尾 ) ,数据由上位机每隔500ms发送一次,在串 ...

  2. STM32串口接收不定长数据原理与源程序(转)

    今天说一下STM32单片机的接收不定长度字节数据的方法.由于STM32单片机带IDLE中断,所以利用这个中断,可以接收不定长字节的数据,由于STM32属于ARM单片机,所以这篇文章的方法也适合其他的A ...

  3. STM32使用串口1配合DMA接收不定长数据,减轻CPU载荷

    STM32使用串口1配合DMA接收不定长数据,减轻CPU载荷 http://www.openedv.com/thread-63849-1-1.html 实现思路:采 用STM32F103的串口1,并配 ...

  4. STM32之串口DMA接收不定长数据

    STM32之串口DMA接收不定长数据 引言 在使用stm32或者其他单片机的时候,会经常使用到串口通讯,那么如何有效地接收数据呢?假如这段数据是不定长的有如何高效接收呢? 同学A:数据来了就会进入串口 ...

  5. Stm32使用串口空闲中断,基于队列来接收不定长、不定时数据

    串口持续地接收不定长.不定时的数据,把每一帧数据缓存下来且灵活地利用内存空间,下面提供一种方式供参考.原理是利用串口空闲中断和DMA,每当对方发来一帧完整的数据后,串口接收开始空闲,触发中断,在中断处 ...

  6. STM32 HAL库使用中断实现串口接收不定长数据

    以前用DMA实现接收不定长数据,DMA的方法接收串口助手的数据,全部没问题,不过如果接收模块返回的数据,而这些数据如果包含回车换行的话就会停止接收,例如接收:AT\r\nOK\r\n,就只能接收到AT ...

  7. 【Arduino】Arduino接收字符串

    [Arduino]Arduino接收字符串 相关文章 [Arduino]开发入门[十]Arduino蓝牙模块与Android实现通信 在[Arduino]开发入门[十]Arduino蓝牙模块与Andr ...

  8. STM32 硬件UART接收超时检测设置

    STM32 硬件UART接收超时检测设置 -----------------本文作者"智御电子",期待与电子爱好者交流学习.---------------- 应用场景 在uart应 ...

  9. 2018最新mfc作为上位机接收硬件端USB或串口数据显示成图片 解决串口接收数据丢字节丢包问题

    原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/9490616.html 本文用的是VS2013MFC写串口数据接收: 第一步:首先建立一个MFC ...

随机推荐

  1. java多线程下载网络图片

    import java.io.BufferedInputStream;import java.io.BufferedOutputStream;import java.io.BufferedReader ...

  2. linux笔记:linux常用命令-用户管理命令

    用户管理命令:useradd(添加用户) 用户管理命令:passwd(设置和修改用户密码) 用户管理命令:who(查看所有登录用户的信息)

  3. android浮动搜索框

    android浮动搜索框的配置比较繁琐,需要配置好xml文件才能实现onSearchRequest()方法. 1.配置搜索的XML配置文件​,新建文件searchable.xml,保存在res/xml ...

  4. uva---(11549)CALCULATOR CONUNDRUM

    Problem C CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She ...

  5. struts2 <s:iterator> status属性

    struts2 <s:iterator> status属性 转载▼   iterator标签主要是用于迭代输出集合元素,如list set map 数组等,在使用标签的时候有三个属性值得我 ...

  6. HTML5标签学习之~~~

    <article> 标签 article 字面意思为“文章”.在web页面中表现为独立的内容,如一篇新闻,一篇评论,一段名言,一段联系方式.这其中包括两方面,一为整个页面的主旨内容,另外就 ...

  7. lmdb简介——结合MVCC的B+树嵌入式数据库

    lmdb简介 lmdb是openLDAP项目开发的嵌入式(作为一个库嵌入到宿主程序)存储引擎.其主要特性有: 基于文件映射IO(mmap) 基于B+树的key-value接口 基于MVCC(Multi ...

  8. POC测试——原型验证,降低风险,IT系统销售工作之一

    POC测试,即Proof of Concept,是业界流行的针对客户具体应用的验证性测试,根据用户对采用系统提出的性能要求和扩展需求的指标,在选用服务器上进行真实数据的运行,对承载用户数据量和运行时间 ...

  9. 所思所想 关于asp.net界面业务分离

    1.体会:使用ASP.NET控件来做前段是有很大的局限性的 2.使用拼接HTML的方式来写代码虽然不符合模式,但是有很大的灵活性 3.如果使用拼接字符串的方式来生成前台的代码,使用NV的话完全可以实现 ...

  10. 使用HttpClient访问被保护资源

    下面的Android应用需要向指定页面发送请求,但该页面并不是一个简单的页面,只有当用户已经登录,而且登录用户的用户名是crazyit.org时才可访问该页面.如果使用HTTPURLConnectio ...