小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么?

小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t。每一条边e(u,v)具有容量c(u,v)。网络流的最大流问题求解的就是从s到t最多能有多少流量。

小Hi:那这个问题解决办法呢?

小Ho:解决网络流的基本思路就是寻找增广路,不断更新残留网络。直到找不到新的增广路,此时得到的流就是该网络的最大流。

小Hi:没错,看来你记得很牢嘛。

小Ho:哎嘿嘿,不过这里我有一个问题,为什么找不到增广路时就已经找到了最大流呢?

小Hi:这一次我就来解决你的疑惑,首先我们要从网络流的割开始讲起。

对于一个网络流图G=(V,E),其割的定义为一种点的划分方式:将所有的点划分为S和T=V-S两个部分,其中源点s∈S,汇点t∈T。

对于一个割(S,T),我们定义净流f(S,T)表示穿过割(S,T)的流量之和,即:

f(S,T) = Σf(u,v) | u∈S,v∈T

举个例子(该例子选自算法导论):

净流f = f(2,4)+f(3,4)+f(3,5) = 12+(-4)+11 = 19

同时我们定义割的容量C(S,T)为所有从S到T的边容量之和,即:

C(S,T) = Σc(u,v) | u∈S,v∈T

同样在上面的例子中,其割的容量为:

c(2,4)+c(3,5)=12+11=23

小Ho:也就是说在计算割(S,T)的净流f(S,T)时可能存在反向的流使得f(u,v)<0,而容量C(S,T)一定是非负数。

小Hi:你这么说也没错。实际上对于任意一个割的净流f(S,T)总是和网络流的流量f相等。比如上面例子中我们改变一下割的方式:

可以计算出对于这两种情况净流f(S,T)仍然等于19。

一个直观的解释是:根据网络流的定义,只有源点s会产生流量,汇点t会接收流量。因此任意非s和t的点u,其净流量一定为0,也即是Σ(f(u,v))=0。而源点s的流量最终都会通过割(S,T)的边到达汇点t,所以网络流的流f等于割的静流f(S,T)。

严格的证明如下:

f(S,T) = f(S,V) - f(S,S)
从S到T的流等于从S到所有节点的流减去从S到S内部节点的流
f(S,T) = f(S,V)
由于S内部的节点之间存在的流一定有对应的反向流,因此f(S,S)=0
f(S,T) = f(s,V) + f(S-s,V)
再将S集合分成源点s和其他属于S的节点
f(S,T) = f(s,V)
由于除了源点s以外其他节点不会产生流,因此f(S-s,V)=0
f(S,T) = f(s,V) = f

所以f(S,T)等于从源点s出来的流,也就是网络的流f。

小Ho:简单理解的话,也就是说任意一个割的净流f(S,T)都等于当前网络的流量f。

小Hi:是这样的。而对于任意一个割的净流f(S,T)一定是小于等于割的容量C(S,T)。那也即是,对于网络的任意一个流f一定是小于等于任意一个割的容量C(S,T)。

而在所有可能的割中,存在一个容量最小的割,我们称其为最小割。

这个最小割限制了一个网络的流f上界,所以有:

对于任一个网络流图来说,其最大流一定是小于等于最小割的。

小Ho:但是这和增广路又有什么关系呢?

小Hi:接下来就是重点了。利用上面讲的知识,我们可以推出一个最大流最小割定理:

对于一个网络流图G=(V,E),其中有源点s和汇点t,那么下面三个条件是等价的:
1. 流f是图G的最大流
2. 残留网络Gf不存在增广路
3. 对于G的某一个割(S,T),此时f = C(S,T)

首先证明1 => 2:

我们利用反证法,假设流f是图G的最大流,但是残留网络中还存在有增广路p,其流量为fp。则我们有流f'=f+fp>f。这与f是最大流产生矛盾。

接着证明2 => 3:

假设残留网络Gf不存在增广路,所以在残留网络Gf中不存在路径从s到达t。我们定义S集合为:当前残留网络中s能够到达的点。同时定义T=V-S。
此时(S,T)构成一个割(S,T)。且对于任意的u∈S,v∈T,有f(u,v)=c(u,v)。若f(u,v)<c(u,v),则有Gf(u,v)>0,s可以到达v,与v属于T矛盾。
因此有f(S,T)=Σf(u,v)=Σc(u,v)=C(S,T)。

最后证明3 => 1:

由于f的上界为最小割,当f到达割的容量时,显然就已经到达最大值,因此f为最大流。

这样就说明了为什么找不到增广路时,所求得的一定是最大流。

小Ho:原来是这样,我明白了。

输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:2个整数A B,A表示最小割的容量,B表示给定图G最小割S集合的点数。

第2行:B个空格隔开的整数,表示S集合的点编号。

若存在多个最小割可以输出任意一个的解。

#include <bits/stdc++.h>

using namespace std;

#define maxn 505
#define INF 0x3f3f3f3f struct Edge
{
int from,to,cap,flow;
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edge;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void addEdge (int from,int to,int cap)
{
edge.push_back((Edge){from,to,cap,});
edge.push_back((Edge){to,from,,});
m = edge.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = ;
vis[s] = ;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
for(int i=; i<G[x].size(); i++)
{
Edge & e = edge[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to] = ;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t||a==) return a;
int flow = ,f;
for(int & i = cur[x]; i<G[x].size(); i++)
{
Edge & e = edge[G[x][i]];
if(d[x] + ==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>)
{
e.flow +=f;
edge[G[x][i]^].flow -=f;
flow +=f;
a-=f;
if(a==) break;
}
}
return flow;
} int Maxflow (int s,int t) {
this->s = s;this->t = t;
int flow = ;
while(BFS()) {
memset(cur,,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
} //求最小割S,T;
void new_BFS(int s,int n)
{
memset(vis,,sizeof(vis));
d[s] = ;
vis[s] = ;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i=;i<G[u].size();i++)
{
Edge & e = edge[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to] = ;
d[e.to] = d[u] + ;
Q.push(e.to);
}
}
} int cnt = ;
for(int i=;i<=n;i++)
{
if(vis[i]) cnt++;
}
printf("%d\n",cnt);
for(int i=;i<=n;i++)
if(vis[i]) printf("%d ",i);
puts("");
} }sol; int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<m;i++) {
int u,v,cap;
scanf("%d%d%d",&u,&v,&cap);
sol.addEdge(u,v,cap);
}
printf("%d ",sol.Maxflow(,n));
sol.new_BFS(,n);
return ;
}

我的理解:

首先一个任意的净流f(s,t)都等于当前网络的流量f.

割的容量C(s,t),为所有从s到t的边容量之和。就有c(s,t)>=f(s,t),那么改变割的定义就会产生一个最小割。

而这个最小割限制了整个网络的流f的上界,所以有:

最大流=最小割。

然后就是求最小割集:

Dinic算法,不停分层,按层增广。求的最大流最小割。

然后就是求最小割集,一遍分层,标记分割s,t;

hiho 第116周,最大流最小割定理,求最小割集S,T的更多相关文章

  1. [最短路,最大流最小割定理] 2019 Multi-University Training Contest 1 Path

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6582 Path Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  2. hiho一下116周 网络流

    网络流二·最大流最小割定理 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? ...

  3. hihocoder 网络流二·最大流最小割定理

    网络流二·最大流最小割定理 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? ...

  4. 【codevs1907】方格取数3(最大流最小割定理)

    网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际 ...

  5. 牛客暑期第六场G /// 树形DP 最大流最小割定理

    题目大意: 输入t,t个测试用例 每个测试用例输入n 接下来n行 输入u,v,w,树的无向边u点到v点权重为w 求任意两点间的最大流的总和 1.最大流最小割定理 即最大流等于最小割 2.无向树上的任意 ...

  6. [HihoCoder1378]网络流二·最大流最小割定理

    思路: 根据最大流最小割定理可得最大流与最小割相等,所以可以先跑一遍EdmondsKarp算法.接下来要求的是经过最小割切割后的图中$S$所属的点集.本来的思路是用并查集处理所有前向边构成的残量网络, ...

  7. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  8. 【hihocoder 1378】网络流二·最大流最小割定理

    [Link]:http://hihocoder.com/problemset/problem/1378 [Description] [Solution] 在求完最小割(最大流)之后; 可以在剩余网络中 ...

  9. 最大流最小割——bzoj1001狼抓兔子,洛谷P2598

    前置知识 平面图 平面图就是平面上任意边都不相交的图.(自己瞎画的不算XD) 对偶图 比如说这个图,我们发现平面图肯定会把平面分成不同的区域(感觉像拓扑图),并把这些区域当做每个点(不被包围的区域独自 ...

随机推荐

  1. Java的正则表达式

    package RegexTest; /** * Created by hu on 2016/3/29. */ /* * Java的正则表达式 在正则表达式中,用\d表示一位数字,如果在其它语言中使用 ...

  2. HDU 4832 Chess(DP+组合数学)(2014年百度之星程序设计大赛 - 初赛(第二轮))

    Problem Description 小度和小良最近又迷上了下棋.棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,“王”在棋盘上的走法遵循十字路 ...

  3. Spring 中的 Bean 配置

    内容提要 •IOC & DI 概述 •配置 bean –配置形式:基于 XML 文件的方式:基于注解的方式 –Bean 的配置方式:通过全类名(反射).通过工厂方法(静态工厂方法 & ...

  4. EXTJS 5 开发环境搭建

    WEBstrom eclipse下载: http://www.eclipse.org/downloads/ spket 下载: 安装方式: http://wangke0611.iteye.com/bl ...

  5. sql 通过游标 拆分xml结构

    -----------------------定义游标变量------------------------------------------  DECLARE @propertyid INT   D ...

  6. Javascript中函数及变量定义的提升

    <html> <head> <title>函数提升</title> <script language="javascript" ...

  7. jquery中的json操作

    $(function() { var json = [ { "id" : "1", "tagName" : "apple" ...

  8. 夺命雷公狗—angularjs—18—angularjs的事件

    对于一款前端框架,提起事件,很容易让人联想到DOM事件,比如说鼠标点击以及页面滚动等.但是我们这里说的angular中的事件和DOM事件并不是一个东西. 事件的发布 我们可以通过 $emit() 以及 ...

  9. ADO.NET中的TransactionScope何时需要启用MSTDC(分布式事务管理)

    我们知道在ADO.NET中可以用TransactionScope来将多个SqlConnection(多个数据库连接)执行的Sql语句放入一个事物中提交或取消,但是使用TransactionScope的 ...

  10. Sqlserver 平面文件导入/ SSIS FlatFileSource导入文件时 出现LocaleID is not installed报错问题

    最近在使用SqlServer和SSIS导入一个CSV文件到数据库时(SSIS选用的FlatFileSource作为数据流源),老是遇到  The LocaleID 4 is not installed ...