Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2079    Accepted Submission(s): 748

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 
Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 
 
 
2 3 107 ==>10 ==>C(5,2)
 
{ 0,0
   0,1  1,0
   1,1, 2,0  0,2
   3,0  0,3   1,2  2,1
}
 
 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<vector>
using namespace std;
typedef __int64 LL; LL dp[]; void init(LL p){
int i;
dp[]=;
for(i=;i<=p;i++)
dp[i]=(dp[i-]*i)%p;
}
LL pow_mod(LL a,LL n,LL p)
{
LL ans=;
while(n)
{
if(n&) ans=(ans*a)%p;
n=n>>;
a=(a*a)%p;
}
return ans;
}
LL C(LL a,LL b,LL p)
{
if(a<b) return ;
if(b>a-b) b=a-b;
LL sum1=dp[a];
LL sum2=(dp[b]*dp[a-b])%p;
sum1=(sum1*pow_mod(sum2,p-,p));
return sum1;
}
LL Lucas(LL n,LL m,LL p)
{
LL ans=;
while(n&&m&&ans)
{
ans=(ans*C(n%p,m%p,p))%p;
n=n/p;
m=m/p;
}
return ans;
}
int main()
{
int T;
LL n,m,p;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&n,&m,&p);
init(p);
if(n>m)swap(n,m);
LL ans= Lucas(n+m,m,p);
printf("%I64d\n",ans);
}
return ;
}

hdu 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  5. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  8. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. 前端新手分析 AJAX执行顺序,数据走向

    我是一名前端的newer 在刚学习AJAX和eJS的时候,对于顺序上面有很大迷惑,现在稍微清楚了一点, 理解不对的地方,还请各位大牛帮助给我指导一下. 总的 服务器和客户端的顺序   一. 除了必要的 ...

  2. 【Origin】 画道

    -夏之时,晚归途中,观云,感雨,识迷障,题以记之. 原道是东边日出西边雨, 却原来乌云蔽日雨不息; 只不过光芒也破云边洒, 可还是满地泥泞水花起. --作于二零一六年七月十一日

  3. Maven2的配置文件settings.xml(转)

    当Maven运行过程中的各种配置,例如pom.xml,不想绑定到一个固定的project或者要分配给用户时,我们使用settings.xml中的settings元素来确定这些配置.这包含了本地仓库位置 ...

  4. HDU 4832 Chess(DP+组合数学)(2014年百度之星程序设计大赛 - 初赛(第二轮))

    Problem Description 小度和小良最近又迷上了下棋.棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,“王”在棋盘上的走法遵循十字路 ...

  5. URAL 1876 Centipede's Morning(数学)

    A centipede has 40 left feet and 40 right feet. It keeps a left slippers and b right slippers under ...

  6. 关于DISTINCE的用法

    SQL SELECT DISTINCT 语句 在表中,可能会包含重复值.这并不成问题,不过,有时您也许希望仅仅列出不同(distinct)的值. 关键词 DISTINCT 用于返回唯一不同的值. 语法 ...

  7. 夺命雷公狗---node下的一聊天室-首发

    今晚感觉挺蛋疼,就用了点时间,在node下开发了个聊天室来玩玩,不过之是简单的开发了套而已,并没多做什么考虑,, 但是发现了一个好处就是用node来写聊天室代码居然少得可怜,这个不佩服node都不行, ...

  8. PAT乙级 1028. 人口普查(20)

    1028. 人口普查(20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 某城镇进行人口普查,得到了全体居民的 ...

  9. archlinux锁屏

    启动管理器用的是 slim 发现锁屏可以用 slimlock

  10. 160826、浏览器渲染页面过程描述,DOM编程技巧以及重排和重绘

    一.浏览器渲染页过程描述   1.浏览器解析html源码,然后创建一个DOM树. 在DOM树中,每一个HTML标签都有一个对应的节点(元素节点),并且每一个文本也都有一个对应的节点(文本节点). DO ...