洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions
P1214 [USACO1.4]等差数列 Arithmetic Progressions
•
o 156通过
o 463提交
• 题目提供者该用户不存在
• 标签USACO
• 难度普及+/提高
提交 讨论 题解
最新讨论
• 这道题有问题
• 怎么进一步优化时间效率啊 …
题目描述
一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列。
在这个问题中a是一个非负的整数,b是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成p的平方 + q的平方的数的集合,其中p和q为非负整数)S中长度为n的等差数列。
输入输出格式
输入格式:
第一行: N(3<= N<=25),要找的等差数列的长度。
第二行: M(1<= M<=250),搜索双平方数的上界0 <= p,q <= M。
输出格式:
如果没有找到数列,输出`NONE'。
如果找到了,输出一行或多行, 每行由二个整数组成:a,b。
这些行应该先按b排序再按a排序。
所求的等差数列将不会多于10,000个。
输入输出样例
输入样例#1:
5
7
输出样例#1:
1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24
说明
题目翻译来自NOCOW。
USACO Training Section 1.4
分析:可以想到如果双平方数是要经常使用到的,每次计算会显得不方便,所以先把双平方数预处理出来,然后想到枚举,那么是怎样枚举呢?难道是每次枚举到一个双平方数再去找下一个平方数吗?效率太低了,可以想到题目要求a,b,那么枚举a,b即可,每次看有没有符合要求的双平方数,之前已经预处理过了,如果有n个,那么就添加到答案中.还要注意限制,双平方数不能超过2 * m * m!注意数组大小不能开太小,否则最后几个点就疯狂RE(在洛谷上是WA......)
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm> using namespace std; int n, m,vis[],sizee,squaree[],ans,num; struct node
{
int a, b;
}s[]; bool cmp(node x, node y)
{
if (x.b != y.b)
return x.b < y.b;
else
return x.a < y.a;
} int main()
{
scanf("%d%d", &n, &m);
for (int i = ; i <= m; i++)
for (int j = i; j <= m; j++)
if (!vis[i * i + j * j])
{
vis[i * i + j * j] = ;
squaree[++sizee] = i * i + j * j;
}
for (int i = ; i <= sizee; i++)
for (int j = ; j <= * m * m; j++)
{
if (squaree[i] + (n - ) * j > * m * m)
break;
ans = ;
for (int k = ; ans < n; k++)
if (vis[squaree[i] + k * j])
ans++;
else
break;
if (ans == n)
{
num++;
s[num].a = squaree[i];
s[num].b = j;
}
}
if (num == )
{
printf("NONE\n");
return ;
}
sort(s + , s + + num, cmp);
for (int i = ; i <= num; i++)
printf("%d %d\n", s[i].a, s[i].b); return ;
}
洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions的更多相关文章
- luogu P1214 [USACO1.4]等差数列 Arithmetic Progressions
题目描述 一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列. 在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双 ...
- [USACO1.4]等差数列 Arithmetic Progressions
题目描述 一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列. 在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双 ...
- 洛谷P1218 [USACO1.5]特殊的质数肋骨 Superprime Rib 使用四种算法
洛谷P1218 [USACO1.5]特殊的质数肋骨 Superprime Rib 水题一道…… 题目描述 农民约翰的母牛总是产生最好的肋骨.你能通过农民约翰和美国农业部标记在每根肋骨上的数字认出它们. ...
- 等差数列Arithmetic Progressions题解(USACO1.4)
Arithmetic Progressions USACO1.4 An arithmetic progression is a sequence of the form a, a+b, a+2b, . ...
- 洛谷 P1214 等差数列
https://www.luogu.org/problemnew/show/P1214 首先暴力枚举可以凑出来的数,对于每个数进行标记. 对于每一个等差数列,当我们知道前两个数后即可以得出整个序列,那 ...
- 【洛谷P1214】等差数列
题目大意:列出从一个给定上界的双平方数集合中选出若干个数,组成长度为 N 的等差数列的首项和公差. 题解:首先,因为是在双平方数集合上的等差数列,而且根据题目范围可知,上界不超过 2e5,可以先打表, ...
- 洛谷P1218 [USACO1.5]特殊的质数肋骨 Superprime Rib
P1218 [USACO1.5]特殊的质数肋骨 Superprime Rib 284通过 425提交 题目提供者该用户不存在 标签USACO 难度普及- 提交 讨论 题解 最新讨论 超时怎么办? ...
- 洛谷P1215 [USACO1.4]母亲的牛奶 Mother's Milk
P1215 [USACO1.4]母亲的牛奶 Mother's Milk 217通过 348提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 ...
- 洛谷P1211 [USACO1.3]牛式 Prime Cryptarithm
P1211 [USACO1.3]牛式 Prime Cryptarithm 187通过 234提交 题目提供者该用户不存在 标签USACO 难度普及- 提交 讨论 题解 最新讨论 题面错误 题目描述 ...
随机推荐
- js常用方法收集
JS获取地址栏制定参数值: //获取URL参数的值 function getUrlParam(name){ var reg = new RegExp("(^|&)"+ na ...
- windows7使用Source insight上远程修改ubuntu共享内核源码
由于本人阅读喜欢使用source insight.前段时间接触了linux核代码,而这份代码只能放在ubuntu服务器上编译,刚开始的时候是在windows上修改,完了之后再copy到服务器上去编译, ...
- SVN 主干(trunk)、分支(branch )、标记(tag)
主干(trunk).分支(branch ).标记(tag) 在SVN中Branch/tag在一个功能选项中,在使用中也往往产生混淆. 在实现上,branch和tag,对于svn都是使用copy实现的, ...
- 访问修饰符protected
protected(C# 参考) protected 关键字是一个成员访问修饰符. 受保护成员在其所在的类中可由派生类实例访问. 示例只有在通过派生类访问时,基类的受保护成员在派生类中才是可访问的. ...
- 访问修饰符internal
internal(C# 参考) internal 关键字是类型和类型的成员 访问修饰符. 只有在同一程序集的文件中,内部类型或成员才是可访问的,如下例所示: public class BaseClas ...
- smartgit document Rebase
The Rebase command allows you to apply commits from one branch to another. Rebase can be viewed as m ...
- [JS]Javascript的this用法
转自:阮一峰 this是Javascript语言的一个关键字. 它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用.比如, function test(){ this.x = 1; } 随着 ...
- POJ 1269 Intersecting Lines(计算几何)
题意:给定4个点的坐标,前2个点是一条线,后2个点是另一条线,求这两条线的关系,如果相交,就输出交点. 题解:先判断是否共线,我用的是叉积的性质,用了2遍就可以判断4个点是否共线了,在用斜率判断是否平 ...
- centos nginx环境下删除CI框架Index.php入口遇到404问题
今天在网上百度看了很多文章,想要去掉index.php入口文件有好多方法,自己也照着在网站到根目录下新建了一个.htaccess文件,内容如下: RewriteEngine On RewriteCon ...
- Java Cookie和Session(转载)
一.cookie机制和session机制的区别 具体来说cookie机制采用的是在客户端保持状态的方案,而session机制采用的是在服务器端保持状态的方案. 同时我们也看到,由于才服务器端保持状态的 ...