Building roads
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6091   Accepted: 2046

Description

Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

Input

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

Output

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3

Sample Output

53246

Source

 
二分答案走2 - sat

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack> using namespace std; const int MAX_N = ;
int N,M,A,B;
bool fri[MAX_N][MAX_N],hate[MAX_N][MAX_N];
int low[MAX_N * ],pre[MAX_N * ],cmp[MAX_N * ];
int dfs_clock,scc_cnt;
int x[MAX_N],y[MAX_N];
stack<int> S;
vector<int> G[ * MAX_N]; void dfs(int u) {
low[u] = pre[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); ++i) {
int v = G[u][i];
if(!pre[v]) {
dfs(v);
low[u] = min(low[u],low[v]);
} else if(!cmp[v]) {
low[u] = min(low[u],pre[v]);
}
} if(low[u] == pre[u]) {
++scc_cnt;
for(;;) {
int x = S.top(); S.pop();
cmp[x] = scc_cnt;
if(x == u) break;
}
}
} bool scc() {
dfs_clock = scc_cnt = ;
memset(cmp,,sizeof(cmp));
memset(pre,,sizeof(pre)); for(int i = ; i <= * N + ; ++i) if(!pre[i]) dfs(i); for(int i = ; i <= N + ; ++i) {
if(cmp[i] == cmp[N + i]) return false;
}
return true;
} int dis(int i,int j) {
return abs(x[i] - x[j]) + abs(y[i] - y[j]);
} void build(int x) {
for(int i = ; i <= * N + ; ++i) {
G[i].clear();
} for(int i = ; i <= N + ; ++i) {
for(int j = i + ; j <= N + ; ++j) {
if(fri[i][j]) {
G[i].push_back(j);
G[i + N].push_back(j + N);
G[j].push_back(i);
G[j + N].push_back(i + N);
}
if(hate[i][j]) {
G[i].push_back(j + N);
G[j].push_back(i + N);
G[j + N].push_back(i);
G[i + N].push_back(j);
} if(dis(i,) + dis(j,) > x) {
G[i].push_back(j + N);
G[j].push_back(i + N);
}
if(dis(i,) + dis(j,) > x) {
G[i + N].push_back(j);
G[j + N].push_back(i);
}
if(dis(i,) + dis(j,) + dis(,) > x) {
G[i + N].push_back(j + N);
G[j].push_back(i);
}
if(dis(i,) + dis(j,) + dis(,)> x) {
G[i].push_back(j);
G[j + N].push_back(i + N);
}
}
} }
void solve() {
int l = ,r = 12e6 + ; //printf("r = %d\n",r); while(l < r) {
int mid = (l + r) / ;
build(mid);
if(scc()) r = mid;
else l = mid + ;
}
build(l);
if(scc())
printf("%d\n",l);
else
printf("-1\n");
} int main()
{
//freopen("sw.in","r",stdin);
scanf("%d%d%d",&N,&A,&B);
for(int i = ; i <= N + ; ++i) {
scanf("%d%d",&x[i],&y[i]);
} for(int i = ; i <= A; ++i) {
int a,b;
scanf("%d%d",&a,&b);
hate[a + ][b + ] = ;
} for(int i = ; i <= B; ++i) {
int a,b;
scanf("%d%d",&a,&b);
fri[a + ][b + ] = ;
} solve(); return ;
}

poj 2749的更多相关文章

  1. HDU 1815, POJ 2749 Building roads(2-sat)

    HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...

  2. Java实现 POJ 2749 分解因数(计蒜客)

    POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...

  3. poj 2749 Building roads (二分+拆点+2-sat)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6229   Accepted: 2093 De ...

  4. poj 2749 2-SAT问题

    思路:首先将hate和friend建边求其次2-SAT问题,判断是否能有解,没解就输出-1,否则用二分枚举最大的长度,将两个barn的距离小于mid的看做是矛盾,然后建边,求2-SAT问题.找出最优解 ...

  5. [poj] 2749 building roads

    原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来 ...

  6. POJ 2749 Building roads 2-sat+二分答案

    把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...

  7. POJ 2749 2SAT判定+二分

    题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...

  8. TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7019   Accepted: 2387 De ...

  9. [转] POJ图论入门

    最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...

随机推荐

  1. git传输协议原理

    git精神:distributed-is-the-new-centralized 转自:http://git-scm.com/book/zh/v1/Git-%E5%86%85%E9%83%A8%E5% ...

  2. CheckBox和RadioButton

    多选按钮CheckBox的使用方法和常用的监听器:OnClickListener.OnCheckedChangeListener 在activity_main.xml中使用LinearLayout布局 ...

  3. makefile复习时发现的编写makefile规则注意事项

    博客中关于makefile的博文数不胜数,比较经典的都很相似,下面这一片,很全面,只是很长,可以作为参考资料:http://blog.csdn.net/liang13664759/article/de ...

  4. SQL Server基本操作积累

    一.基本操作 1.将数据绑定到DataGridVirw控件上显示的数据列标题将会是数据库中的字段名称,可以在使用select语句时使用AS关键字将转化为列名的别名 select name AS 姓名 ...

  5. 九度oj 1554 区间问题

    原题链接:http://ac.jobdu.com/problem.php?pid=1554 由数列的前缀和:$\begin{align*}\Large{} S_n &=\Large{}\sum ...

  6. 基于Elasticsearch的自定义评分算法扩展

    实现思路: 重写评分方法,调整计算文档得分的过程,然后根据function_score或script_sort进行排序检索.   实现步骤: 1.新建java项目TestProject,引入Elast ...

  7. MYSQL主键存在则更新,不存在则插入的解决方案(ON DUPLICATE KEY UPDATE)

    经常我们使用的最简单的数据库操作就是数据的更新,删除和插入,对于批量删除和插入的方法相信大家都很清楚,那么批量更新估计有的人就不知道了,并且还有批量插入,在插入时若有主键冲突则更新的操作,这在EAV模 ...

  8. Entity Framework学习笔记(二)----CRUD(1)

    请注明转载地址:http://www.cnblogs.com/arhat 这篇文章老魏和大家分享一下Entity Framework的CRUD操作,在这之前呢,老魏先说一下老魏对EF的一个整体的认识, ...

  9. 89C51单片机定时器控制的流水灯

    /***************************************************Copyright: 2014-02-11.version1.0File name: timer ...

  10. Jquery Mobile局部刷新后js和css失效,需局部渲染

    $(function () {    $("#submit").click(function(){      var storage = window.localStorage;  ...