Building roads
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6091   Accepted: 2046

Description

Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

Input

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

Output

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3

Sample Output

53246

Source

 
二分答案走2 - sat

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack> using namespace std; const int MAX_N = ;
int N,M,A,B;
bool fri[MAX_N][MAX_N],hate[MAX_N][MAX_N];
int low[MAX_N * ],pre[MAX_N * ],cmp[MAX_N * ];
int dfs_clock,scc_cnt;
int x[MAX_N],y[MAX_N];
stack<int> S;
vector<int> G[ * MAX_N]; void dfs(int u) {
low[u] = pre[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); ++i) {
int v = G[u][i];
if(!pre[v]) {
dfs(v);
low[u] = min(low[u],low[v]);
} else if(!cmp[v]) {
low[u] = min(low[u],pre[v]);
}
} if(low[u] == pre[u]) {
++scc_cnt;
for(;;) {
int x = S.top(); S.pop();
cmp[x] = scc_cnt;
if(x == u) break;
}
}
} bool scc() {
dfs_clock = scc_cnt = ;
memset(cmp,,sizeof(cmp));
memset(pre,,sizeof(pre)); for(int i = ; i <= * N + ; ++i) if(!pre[i]) dfs(i); for(int i = ; i <= N + ; ++i) {
if(cmp[i] == cmp[N + i]) return false;
}
return true;
} int dis(int i,int j) {
return abs(x[i] - x[j]) + abs(y[i] - y[j]);
} void build(int x) {
for(int i = ; i <= * N + ; ++i) {
G[i].clear();
} for(int i = ; i <= N + ; ++i) {
for(int j = i + ; j <= N + ; ++j) {
if(fri[i][j]) {
G[i].push_back(j);
G[i + N].push_back(j + N);
G[j].push_back(i);
G[j + N].push_back(i + N);
}
if(hate[i][j]) {
G[i].push_back(j + N);
G[j].push_back(i + N);
G[j + N].push_back(i);
G[i + N].push_back(j);
} if(dis(i,) + dis(j,) > x) {
G[i].push_back(j + N);
G[j].push_back(i + N);
}
if(dis(i,) + dis(j,) > x) {
G[i + N].push_back(j);
G[j + N].push_back(i);
}
if(dis(i,) + dis(j,) + dis(,) > x) {
G[i + N].push_back(j + N);
G[j].push_back(i);
}
if(dis(i,) + dis(j,) + dis(,)> x) {
G[i].push_back(j);
G[j + N].push_back(i + N);
}
}
} }
void solve() {
int l = ,r = 12e6 + ; //printf("r = %d\n",r); while(l < r) {
int mid = (l + r) / ;
build(mid);
if(scc()) r = mid;
else l = mid + ;
}
build(l);
if(scc())
printf("%d\n",l);
else
printf("-1\n");
} int main()
{
//freopen("sw.in","r",stdin);
scanf("%d%d%d",&N,&A,&B);
for(int i = ; i <= N + ; ++i) {
scanf("%d%d",&x[i],&y[i]);
} for(int i = ; i <= A; ++i) {
int a,b;
scanf("%d%d",&a,&b);
hate[a + ][b + ] = ;
} for(int i = ; i <= B; ++i) {
int a,b;
scanf("%d%d",&a,&b);
fri[a + ][b + ] = ;
} solve(); return ;
}

poj 2749的更多相关文章

  1. HDU 1815, POJ 2749 Building roads(2-sat)

    HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...

  2. Java实现 POJ 2749 分解因数(计蒜客)

    POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...

  3. poj 2749 Building roads (二分+拆点+2-sat)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6229   Accepted: 2093 De ...

  4. poj 2749 2-SAT问题

    思路:首先将hate和friend建边求其次2-SAT问题,判断是否能有解,没解就输出-1,否则用二分枚举最大的长度,将两个barn的距离小于mid的看做是矛盾,然后建边,求2-SAT问题.找出最优解 ...

  5. [poj] 2749 building roads

    原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来 ...

  6. POJ 2749 Building roads 2-sat+二分答案

    把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...

  7. POJ 2749 2SAT判定+二分

    题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...

  8. TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7019   Accepted: 2387 De ...

  9. [转] POJ图论入门

    最短路问题此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等)http://acm.pku.edu.cn/JudgeOnline/problem?id=2449题意: ...

随机推荐

  1. Moses manual 中Basline System 2.3.4节用IRSTLM创建语言模型的命令有误

    手册里写到: ~/irstlm/bin/compile-lm \ --text yes \ news-commentary-v8.fr-en.lm.en.gz \ news-commentary-v8 ...

  2. ORA-01017 invalid username/password;logon denied" (密码丢失解决方案)

    1.先确认是否输错 用户名和密码 2.如果的确是丢失密码的话: 查看sqlnet.ora 如果是 SQLNET.AUTHENTICATION_SERVICES= (NONE) , 需更改为SQLNET ...

  3. 调试mvc 源码【转:http://www.cnblogs.com/wucj/archive/2013/06/09/3128698.html】

    最近在研究asp.net mvc的源码,于是在想,既然提供了源码,那我们如何进入源码调试了?在网上找了一些调试的方法,试了几个都不行,于是折腾了一上午,终于弄出来了,下面看看我的操作步骤.   一:准 ...

  4. b75,gtx560,I5 安装10.10.2

    1.安装变色龙,wowpc.iso,这个是可以让电脑从windows引导 mac 安装的. 2.把黑苹果CDR压到一个硬盘分区里去. 3.安装10.10.2,把安装盘里的extra拷贝到 系统盘里 , ...

  5. Redis 客户端配置及示例

    一.redis自定义配置节点 <configSections> <section name ="RedisConfig" type="Amy.Toolk ...

  6. 自学asp.net mvc(三)

    1.将前台框架的登录页面代码,复制到Login.cshtml. 2.将文本框替换. 3.缓存机制. 4.类图

  7. 012--VS2013 C++ 斜角景物地图贴图-位图

    因为bmp图片上传不了,只能截图啦 //全局变量HDC mdc;HBITMAP fullmap;//声明位图对象,在初始化函数中完成的斜角地图会保存在这个位图中const int rows = 10, ...

  8. android开发 根据Uri获取真实路径

    Uri uri = data.getData(); String[] proj = { MediaStore.Images.Media.DATA }; Cursor actualimagecursor ...

  9. 【Simplify Path】cpp

    题目: Given an absolute path for a file (Unix-style), simplify it. For example,path = "/home/&quo ...

  10. OpenFramework中视频或者图片进行中心旋转、平移、放大、缩小、矫正(本例以视频为准,只给出主要代码)

    /********** update mesh部分***********/ for(int i=0;i<4;i++) {  mesh[i].clear(); //重要,不加的话,移动视频的四个角 ...