POJ1275Cashier Employment(查分约束系统)
链接1275Cashier Employment
题目大意就是说有一些人来应聘一个超级市场的工作,每个人的应聘的起始时间在0~23时之间,而超市在时间i需要R[i]个工作人员,而每个人的工作时间都是8小时,问最少需要多少人使得超市一天24小时满足超市的工作人数的需要。
设工作时间为1~24时,S[i]表示前i个小时所需要的工作人数的最小值,那么结果就可以表示成0为起点,24为终点的最短路。下面是约束不等式:
0<=S[i] - S[i-1]<= t[i] (1<=i<=24)
S[i] - S[i-8] >= R[i] (8<=i<=24)
S[i] + S[24] - S[i+16] >= R[i] (0<=i<=7)
整理之后:
S[i] - S[i-1] >= 0 (1<=i<=24)
S[i-1] - S[i] >= -t[i] (1<=i<=24)
S[i] - S[i-8] >= R[i] (8<=i<=24)
S[i] - S[i+16] >= R[i] - S[24] (0<=i<=7)
这样按照A-B >= W就可以建一些由B指向A的权值为W的有向边,求最长路。
或则是A指向B的权值为-W的有向边,并求其最短路。
另外,由于上图中S[24]是不知道的,所以枚举它就行,我是二分枚举的。
数据比较水(只有24个小时),用Bellman-Ford即可:
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-15
#define MAXN 25
#define INF 1000000007
#define MAX(a,b) (a > b ? a : b)
#define MIN(a,b) (a < b ? a : b)
#define mem(a) memset(a,0,sizeof(a)) struct EDGE
{
int v;
int w;
int next;
}edge[*MAXN];
int head[MAXN], d[MAXN],tot,T,N,R[MAXN],t[MAXN],ans,x; bool Bellman_Ford(int s)
{
for(int i=;i<=;i++) d[i] == (i==s)?:INF;
for(int k=;k<=;k++)
{
for(int i=;i<=;i++)
{
for(int e = head[i];d[i]!=INF && e!=-;e=edge[e].next)
{
if(d[edge[e].v]>d[i]+edge[e].w)
{
d[edge[e].v] = d[i] + edge[e].w;
}
}
}
}
for(int i=;i<=;i++)
{
for(int e = head[i];d[i]!=INF && e!=-;e=edge[e].next)
{
if(d[edge[e].v]>d[i]+edge[e].w)return false;
}
}
return true;
} void AddEdge(int u,int v,int w)
{
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
} void BuildGragh(int NumOfPer)//由于每次总人数都不一样,所以需要重新建图
{
tot = ; mem(edge); memset(head,-,sizeof(head));
for(int i=;i<=;i++){AddEdge(i-,i,t[i]); AddEdge(i,i-,);}
for(int i=;i<=;i++) AddEdge(i,i-,-R[i]);
for(int i=;i<=;i++) AddEdge(i,i+,NumOfPer-R[i]);
AddEdge(,,-NumOfPer);
} void BSearch(int low,int high)//对总人数二分
{
if(low > high)return ;
int mid = (low + high) / ;
BuildGragh(mid);
if(Bellman_Ford())//表示可以找到一种解决方案
{
ans = mid;
BSearch(low, mid-);
}
else
{
BSearch(mid+,high);
}
} int main()
{
while(~scanf("%d", &T))while(T--)
{ mem(R); mem(t);
for(int i=;i<=;i++)
{
scanf("%d", &R[i]);
}
scanf("%d", &N);
for(int i=;i<N;i++){ scanf("%d", &x); t[x+]++;}
ans = -;
BSearch(,N);
if(ans == -) printf("No Solution\n");
else printf("%d\n",ans);
}
return ;
}
POJ1275Cashier Employment(查分约束系统)的更多相关文章
- POJ2983 查分约束系统
题意: 给你n个点,然后给你两种情况,P a b c,表明a在b的北边c那么远,V a b 表明a在b的北边(距离最少是1),问你这些条件是否冲突. 思路: 一开始想用带权并 ...
- bzoj 2330 SCOI2011糖果 查分约束系统
就根据题目中给的约束条件建图就行了 需要注意的是,我们要做的是最长路,因为需要约束每个点都是大于0 那么可以建一个超级源指向所有点,超级源的dis是1,边长为0 那么这样做最长路就可以了 好了我们这么 ...
- 洛谷P1993 小 K 的农场(查分约束)
/* 加深一下对查分约束的理解 建图的时候为了保证所有点联通 虚拟一个点 它与所有点相连 权值为0 然后跑SPFA判负环 这题好像要写dfs的SPFA 要不超时 比较懒 改了改重复进队的条件~ */ ...
- 1247 排排站 USACO(查分+hash)
/* 暴力查分 n*n */ #include<cstdio> #include<cstring> #include<iostream> #define maxn ...
- codevs 1242 布局(查分约束+SPFA)
/* 查分约束. 给出的约束既有>= 又有<= 这时统一化成一种 Sb-Sa>=x 建边 a到b 权值为x Sb-Sa<=y => Sa-Sb>=-y 建边 b到a ...
- poj 1201 Interval (查分约束)
/* 数组开大保平安. 查分约束: 输入的时候维护st和end 设每个点取元素di个 维护元素个数前缀和s Sbi-Sai-1>=ci 即:建立一条从ai-1到bi的边 权值为ci 表示ai到b ...
- 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)
[POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS Memory Limit: 10 ...
- 智学网电脑端查分小工具 已更新V2.2
特别鸣谢这段代码的源作者,我的大佬同学\(MetalkgLZH\).由于我没有做什么工作,这篇随笔基本不含相关技术细节. 再次强调,这个程序的主要部分由\(MetalkgLZH\)完成.技术细节与源码 ...
- BZOJ 4289: PA2012 Tax Dijkstra + 查分
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
随机推荐
- HDU 5339 Untitled (暴力枚举)
题意:给定一个序列,要求从这个序列中挑出k个数字,使得n%a1%a2%a3....=0(顺序随你意).求k的最小值. 思路:排个序,从大的数开始模起,这是因为小的模完还能模大的么? 每个元素可以选,也 ...
- java实现的kmp算法
package DataStructure; import java.util.ArrayList; import java.util.List; //KMP算法的实现 //以下代码由freedom结 ...
- appdata文件夹有什么用途?C盘appdata可以删除吗?
在内存紧张的时候,我们都会选择删除一些无关紧要的大文件来释放内存,有不少网友发现在系统C盘下有一个appdata文件夹,而且体积挺大的,不知道能不能删除,针对此问题,本文就为大家介绍appdata文件 ...
- C#循环声明一个类
宗旨就是把实例化的类循环放到字典里面 Dictionary<string, Data> dic = new Dictionary<string, Data>(); ; i &l ...
- Multi-Device Hybrid Apps for Visual Studio CTP2.0
http://msdn.microsoft.com/en-us/library/dn771545.aspx http://www.microsoft.com/en-us/download/detail ...
- 【PHP】linux搭建PHP运行环境
之前在windows下写了hello world,终归是不够用啊,因为开发环境是Linux,怎么办呢~~~学习学习再学习 写在前面的话:我从百度文库的一个文章里摘出来的,原文章名称<Linux下 ...
- UIButton 在UIScrollView里面 点击效果不明显的问题
self.scrollView.delaysContentTouches = NO; -(BOOL)touchesShouldCancelInContentView { return YES; }
- 关于SQL Server中分区表的文件与文件组的删除(转)
在SQL Server中对表进行分区管理时,必定涉及到文件与文件组,关于文件与文件组如何创建在网上资料很多,我博客里也有两篇相关转载文件,可以看看,我这就不再细述,这里主要讲几个一般网上很少讲到的东西 ...
- Python自动单元测试框架
原文链接:http://www.ibm.com/developerworks/cn/linux/l-pyunit/ 软件的测试是一件非常乏味的事情,在测试别人编写的软件时尤其如此,程序员通常都只对编写 ...
- B.xml
pre{ line-height:1; color:#1e1e1e; background-color:#f0f0f0; font-size:16px;}.sysFunc{color:#627cf6; ...