布隆过滤BitMap原理
一、问题引入
BitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射,怎么理解呢?
举一个例子,有一个无序有界int数组{1,2,5,7},初步估计占用内存44=16字节,这倒是没什么奇怪的,但是假如有10亿个这样的数呢,10亿4/(102410241024)=3.72G左右。如果这样的一个大的数据做查找和排序,那估计内存也崩溃了,有人说,这些数据可以不用一次性加载,那就是要存盘了,存盘必然消耗IO。我们提倡的是高性能,这个方案直接不考虑。
二、问题分析
如果用BitMap思想来解决的话,就好很多,那么BitMap是怎么解决的啊,如下:
一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有,那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?如下图:
是不是很神奇,那么现在假如10亿的数据所需的空间就是3.72G/32了吧,一个占用32bit的数据现在只占用了1bit,节省了不少的空间,排序就更不用说了,一切显得那么顺利。这样的数据之间没有关联性,要是读取的,你可以用多线程的方式去读取。时间复杂度方面也是O(Max/n),其中Max为byte[]数组的大小,n为线程大小。
三、应用与代码
如果BitMap仅仅是这个特点,我觉得还不是它的优雅的地方,接下来继续欣赏它的魅力所在。下面的计算思想其实就是针对bit的逻辑运算得到,类似这种逻辑运算的应用场景可以用于权限计算之中。
再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。
Index(N) = N/8 = N >> 3; Position(N) = N%8 = N & 0x07;
基于上面的分析,我们写一个简单的BitMap的算法如下:
public class BitMap {
//保存数据的
private byte[] bits; //能够存储多少数据
private int capacity; public BitMap(int capacity){
this.capacity = capacity; //1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8
bits = new byte[(capacity >>3 )+1];
} public void add(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。
bits[arrayIndex] |= 1 << position;
} public boolean contain(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可
return (bits[arrayIndex] & (1 << position)) !=0;
} public void clear(int num){
// num/8得到byte[]的index
int arrayIndex = num >> 3; // num%8得到在byte[index]的位置
int position = num & 0x07; //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了.
bits[arrayIndex] &= ~(1 << position); } public static void main(String[] args) {
BitMap bitmap = new BitMap(100);
bitmap.add(7);
System.out.println("插入7成功"); boolean isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit); bitmap.clear(7);
isexsit = bitmap.contain(7);
System.out.println("7是否存在:"+isexsit);
}
}
布隆过滤BitMap原理的更多相关文章
- 简化布隆过滤器——BitMap
简化布隆过滤器--BitMap 前言 前段开发项目试就发现,一部分的代码实现存在着一些性能上的隐患.但当时忙于赶进度和由于卡发中的不稳定因素,想了许多解决方案也没有机会实施.最近,正好趁个机会进行一系 ...
- python实现布隆过滤器及原理解析
python实现布隆过滤器及原理解析 布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地 ...
- 推荐系统之协同过滤的原理及C++实现
1.引言 假如你经营着一家网店,里面卖各种商品(Items),有很多用户在你的店里面买过东西,并对买过的Items进行了评分,我们称之为历史信息,现在为了提高销售量,必须主动向用户推销产品,所以关键是 ...
- BitMap原理
BitMap原理
- 大数据处理算法--Bloom Filter布隆过滤
1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很 ...
- 布隆过滤算法体会(BlooomFilter)
在一个m位的位数组里,一个字符串经过k次hash随机分布到k个位置. http://www.cnblogs.com/aspnethot/articles/3442813.html 布隆filter数据 ...
- 布隆过滤器(Bloom Filter)原理以及应用
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的 ...
- 布隆过滤器(Bloom Filter)的原理和实现
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...
- 基于Java实现简化版本的布隆过滤器
一.布隆过滤器: 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率 ...
随机推荐
- MVC中子页面如何引用模板页中的jquery脚本
MVC中子页面如何引用模板页中的jquery脚本 最近在学习mvc,遇到了一个问题:在html页面中写js代码,都是引用mvc5自带的jquery脚本,虽然一拖(将指定的jquery脚本如 jquer ...
- JavaScript中的window对象的属性和方法;JavaScript中如何选取文档元素
一.window对象的属性和方法 ①setTimeout()方法用来实现一个函数在指定毫秒之后运行,该方法返回一个值,这个值可以传递给clearTimeout()用于取消这个函数的执行. ②setIn ...
- canvas-2arcTo.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Java 初级软件工程师 认证考试试卷1
Java 初级软件工程师 认证考试试卷 笔试(A卷) 考试时间150分钟 总分 100分 姓 名_______________________ 身份证号_____________ ...
- Java 开源博客 Solo 1.8.0 发布 - 改进文件上传
本次发布主要是更新了编辑器,使其更好地支持文件上传.(1.8.0 版本变更记录请看这里) 我们的 Markdown 编辑器: 另外,我们对 HTTPS 的支持也更完善了,欢迎大家试用! 简介 Solo ...
- api接口签名认证的一种方式
请求方 try { using (var client = new HttpClient()) { StringContent content = new StringContent(strParam ...
- python自动化开发-6
python的常用模块(续) shutil模块:主要是做文件复制的.文件,文件夹,压缩包等的处理模块. 常用的方法: shutil.copyfileobj:将文件的内容拷贝到另一个文件中. 例子: # ...
- MVC与单元测试实践之健身网站(八)-统计分析
统计分析模块与之前的内容相对独立,用于记录并跟踪各部位围度的变化.还需提供对所作计划的分析,辅助使计划更合理. 一 围度记录 这儿可以记录各项身体围度指标,现在包括体重在内身体上上下下基本全部提供了 ...
- ionic打包报错Execution failed for task ':processDebugResources'
ionic 打包的时候报了这样一个错误:Execution failed for task ':processDebugResources' 分析: compile "com.android ...
- spring BeanFactory及ApplicationContext中Bean的生命周期
spring bean 的生命周期 spring BeanFactory及ApplicationContext在读取配置文件后.实例化bean前后.设置bean的属性前后这些点都可以通过实现接口添加我 ...