prufer序列

性质:

1.一棵n个结点的树可表示为长度 n-2 的prufer序列

2.每个结点出现在prufer序列中的次数==该结点的度 -1

公式推出来了,大数模板没有除法。。等开学了Java试一发。。

bzoj 1005的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  3. bzoj 1005 1211 prufer序列总结

    两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  7. BZOJ 1005 明明的烦恼 (组合数学)

    题解:n为树的节点数,d[ ]为各节点的度数,m为无限制度数的节点数. 则               所以要求在n-2大小的数组中插入tot各序号,共有种插法: 在tot各序号排列中,插第一个节点的 ...

  8. [BZOJ]1005 明明的烦恼(HNOI2008)

    BZOJ的第一页果然还是很多裸题啊,小C陆续划水屯些板子. Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间 ...

  9. BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)

    题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...

  10. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

随机推荐

  1. 卸载win10内置的onenote

    powershell命令如下 get-appxpackage *onenote* | remove-appxpackage

  2. 基于Redis的分布式锁到底安全吗

    http://zhangtielei.com/posts/blog-redlock-reasoning.html

  3. [转] git rm与git rm --cached

    当我们需要删除暂存区或分支上的文件, 同时工作区也不需要这个文件了, 可以使用 git rm file_path 当我们需要删除暂存区或分支上的文件, 但本地又需要使用, 只是不希望这个文件被版本控制 ...

  4. Ubuntu14.04创建无线WiFi,android可以连接上网

    前提条件: ubuntu14.04 unity,已经通过有线连接到internet 一般环境下创建的wifi热点android设备是无法识别的,网上说通过ap-hotspot方式创建出来的热点手机可以 ...

  5. 【译】异步JavaScript的演变史:从回调到Promises再到Async/Await

    我最喜欢的网站之一是BerkshireHathaway.com--它简单,有效,并且自1997年推出以来一直正常运行.更值得注意的是,在过去的20年中,这个网站很有可能从未出现过错误.为什么?因为它都 ...

  6. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  7. javaNIO的总结

    放大1.5倍查看 使用NIO对文件进行COPY操作 public class TestNIOCopyFile { public static void main(String[] args) thro ...

  8. rem+media+jquery布局结局方案

    ; ; } ? ; + 'px'; } document.addEventListener('DOMContentLoaded', callback); window.addEventListener ...

  9. XX-Net的局域网共享代理方法

    局域网内有一台电脑安装了XX-net,将其共享给局域网内其他电脑,让其他电脑经这台电脑的XX-net配置访问网站. 一.电脑端操作1.在XXnet/data/gae_proxy目录下修改config. ...

  10. python + seleinum +phantomjs 设置headers和proxy代理

    python + seleinum +phantomjs 设置headers和proxy代理     最近因为工作需要使用selenium+phantomjs无头浏览器,其中遇到了一些坑,记录一下,尤 ...