求最小生成树的kruskal算法
连通无向图有最小生成树,边权从小到大排序,每次尝试加入权最小的边,如果不成圈,就把这边加进去,所有边扫一遍就求出了最小生成树。
判断连通分支用Union-Set(并查集),就是把连通的点看成一个集合,只关心哪些点在一个集合里,而不关心相互的连接方式。x父节点用fa【x】保存;如果x没有父节点,fa【x】 = x。查找一条长链的时候每次用递归把链上的点的父节点全设置成根节点,方便下次查找。思路看上去挺简单的,然而程序调试了好久。开始把边按无向图那样正反各存一次,其实是没必要的,反正每条边考察一次;剩下的就是细节问题,码力不足到处出错。测试了一组数据:
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxm = ;
struct Edge
{
int u, v, w;
Edge(){}
Edge(int u, int v, int w):u(u), v(v), w(w){}
}E[maxm];//只存边就好啦,不用把从一个点出发的边穿起来
int n, m;
int r[maxm], fa[maxm];
int cmp(int x, int y)
{
return E[x].w < E[y].w;
}
int findbaba(int x)
{
return fa[x] == x? x : fa[x] = findbaba(fa[x]);//找父节点
}
int kruskal()
{
int ans = ;
vector<int> path;//存路径
for(int i = ; i <= n; i++)
fa[i] = i;//每个人的爸爸都是自己(误)
for(int i = ; i < m; i++)
r[i] = i;//把边的序号放一个数组里
sort(r, r+m, cmp);//移动序号比移动struct容易吧
for(int i = ; i < m; i++)
{
int e = r[i];
int x = findbaba(E[e].u);
int y = findbaba(E[e].v);
if(x != y)//加入边e后不成圈
{
ans += E[e].w;
fa[x] = y;
path.push_back(e);
}
}
for(int i = ; i < path.size(); i++)
{
int e = path[i];
printf("%d<->%d :%d ", E[e].u, E[e].v, E[e].w);
}//打印路径
return ans;//最小权和
} int main()
{
//freopen("in.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
for(int i = ; i < m; i++)
{
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
}
printf("\n%d\n", kruskal());
}
return ;
}
求最小生成树的kruskal算法的更多相关文章
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 数据结构与算法--最小生成树之Kruskal算法
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...
- HDU1875——畅通工程再续(最小生成树:Kruskal算法)
畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...
- 【最小生成树之Kruskal算法】
看完之后推荐再看一看[最小生成树之Prim算法]-C++ 定义:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kr ...
- [总结]最小生成树之Kruskal算法
目录 一.最小生成树的相关知识 1. 树的性质 2. 生成树 3. 最小生成树 4. 最小生成树的性质 二.Kruskal算法求最小生成树 1. 核心思想 2. 具体流程 3. 图示 4. 代码实施 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 23最小生成树之Kruskal算法
图的最优化问题:最小生成树.最短路径 典型的图应用问题 无向连通加权图的最小生成树 有向/无向加权图的最短路径 四个经典算法 Kruskal算法.Prim算法---------------最小生成树 ...
- 最小生成树的Kruskal算法
库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法.Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的 ...
- 算法学习记录-图——最小生成树之Kruskal算法
之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集 ...
随机推荐
- SpringBoot2.0微信小程序支付多次回调问题
SpringBoot2.0微信小程序支付多次回调问题 WxJava - 微信开发 Java SDK(开发工具包); 支持包括微信支付.开放平台.公众号.企业微信/企业号.小程序等微信功能的后端开发. ...
- 【PMP】组织结构类型
1.简单型 描述:人员并肩工作,所有者/经营者直接做出主要决定并监督执行. PM角色:兼职(协调员) PM权限:极少(无) 项目管理人员:极少(无) 资源可用性:极少(无) 项目预算管理人:负责人 2 ...
- 修改openssh显示版本号
问题描述: 漏洞安全对使用的软件扫描漏洞,都是依据软件的版本号探测的,直接升级软件风险太大,因此规避风险,修改软件版本号实现其目的! 问题解决: strings xxx |grep xxx //实 ...
- 评分模型的检验方法和标准&信用评分及实现
评分模型的检验方法和标准通常有:K-S指标.交换曲线.AR值.Gini数等.例如,K-S指标是用来衡量验证结果是否优于期望值,具体标准为:如果K-S大于40%,模型具有较好的预测功能,发展的模型具有成 ...
- 基于 Python 官方 GitHub 构建 Python 文档
最近在学 Python,所以总是在看 Python 的官方文档, https://docs.python.org/2/ 因为祖传基因的影响,我总是喜欢把这些文档保存到本地,不过 Python 的文档实 ...
- mysql多实例配置下,用脚本启动mysql时,出现Please read "Security" section of the manual to find out how to run mysqld as root!
[root@localhost 3308]# mysqld stop170414 0:35:28 [Note] --secure-file-priv is set to NULL. Operation ...
- ip代理优化
如何保证可用ip不低于2000个,代理ip池优化策略 第一:获得大量ip: 第二:验证可用ip: 第三:监控可用ip: 第三:保证可用ip不低于3000或者5000: 截图是实时可用ip数量 心得:不 ...
- SQL Server In-Memory OLTP Internals for SQL Server 2016
SQL Server In-Memory OLTP Internals for SQL Server 2016 这份白皮书是在上一份<SQL Server In-Memory OLTP Inte ...
- Ubuntu安装Sqlite报错:No module named 'ConfigParser'
安装命令:`sudo apt install sqlite` 原因,我把系统默认的python版本改为了python3 改为python2即可,用update-alternatives命令,见此文(方 ...
- redis 集群搭建碰到的问题
make PREFIX=/usr/local/redis install把编译好的redis 安装到指定目录下. redis.conf文件从源码目录拷贝到/usr/local/redis(安装目录)下 ...