操作系统 : CentOS7.3.1611_x64

gcc版本 :4.8.5

基本存储格式(从高到低) : Sign + Exponent + Fraction

Sign : 符号位

Exponent : 阶码

Fraction : 有效数字

32位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :8 bits (第 30 至 23 共 8 个bits)

Fraction :23 bits (第 22 至 0 共 23 个bits)

32位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-127) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 130 (127 + 3),用二进制表示为: 10000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为: 01000001010010000000000000000000

即 : 0100 0001 0100 1000 0000 0000 0000 0000

用16进制表示 : 0x41480000

4、还原真值

Sign = bin() = 

Exponent = bin() = 

Fraction = bin(0.1001) =  ** (-) +  ** (-) = 0.5625

真值:

(-) ** *  **(-) * ( + 0.5625) = 12.5

32位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/floatTest1.cpp

运行效果:

[root@localhost floatTest1]# ./floatToBin1
sizeof(float) :
sizeof(int) :
a = 12.500000
showFloat : 0x
UFP : ,,
b : 0x41480000
showIEEE754 a = 12.500000
showIEEE754 varTmp = 0x00c00000
showIEEE754 c = 0x00400000
showIEEE754 i = , a1 = 1.000000 , showIEEE754 c = , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 : 0x41480000
[root@localhost floatTest1]#

64位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :11 bits (第 62 至 52 共 11 个bits)

Fraction :52 bits (第 51 至 0 共 52 个bits)

64位非0浮点数的真值为(python语法) :

(-) **Sign *  **(Exponent-) * ( + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 1026 (1023 + 3),用二进制表示为: 10000000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为:

0100000000101001000000000000000000000000000000000000000000000000

即 : 0100 0000 0010 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

用16进制表示 : 0x4029000000000000

4、还原真值

Sign = bin() =
Exponent = bin() =
Fraction = bin(0.1001) = ** (-) + ** (-) = 0.5625

真值:

(-) ** *  **(-) * ( + 0.5625) = 12.5

64位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/doubleTest1.cpp

运行效果:

[root@localhost t1]# ./doubleToBin1
sizeof(double) :
sizeof(long) :
a = 12.500000
showDouble : 0x
UFP : ,,
b : 0x0
showIEEE754 a = 12.500000
showIEEE754 logLen =
showIEEE754 c = (0x4020000000000000)
showIEEE754 b = 0x4020000000000000
showIEEE754 varTmp = 0x8000000000000
showIEEE754 c = 0x8000000000000
showIEEE754 i = , a1 = 1.000000 , showIEEE754 c = , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 : 0x4029000000000000
[root@localhost t1]#

好,就这些了,希望对你有帮助。

本文github地址:

https://github.com/mike-zhang/mikeBlogEssays/blob/master/2018/20180117_IEEE754标准的浮点数存储格式.rst

欢迎补充

IEEE754标准的浮点数存储格式的更多相关文章

  1. 将四个BYTE数值转换成IEEE754标准的浮点数(两种方法:用Addr函数取字节数字的首地址,或者用Absolute关键字)

    在工作中,经常使用到IEEE754格式的数据.IEEE754格式的数据占四个字节,好像Motorola格式和Intel格式的还不一样. 由于工作中很少和他打交道(使用的软件内部已经处理),就没太在意. ...

  2. C#中浮点数依IEEE-754标准转二进制串 (MODBUS 浮点数转换)

    因工作需要,把再串口通信中浮点数与字节流的数据转换函数放在这,转发的,谢谢原作者. 今天花了一天的时间搜罗资料,为了解决一个串口编程的进制转化问题.因为串口传送的浮点数据格式与IEEE-754标准(3 ...

  3. 第二章 运算方法与运算器(浮点数的加减法,IEEE754标准32/64浮点规格化数)

    这一章,主要介绍了好多种计算方法.下面,写一点自己对于有些计算(手写计算过程)的见解. 1.原码.反码.补码 原码:相信大家都会写,符号位在前二进制数值在后,凑够位数即可. 反码:原码符号位不变,其他 ...

  4. 十进制浮点数转换成IEEE754标准的32浮点数的二进制格式

    参考: http://jimmygod.blog.163.com/blog/static/43511339200792605627411/ http://blog.csdn.net/archersab ...

  5. IEEE754标准浮点数表示与舍入

    原文地址:https://blog.fanscore.cn/p/26/ 友情提示:本文排版不太好,但内容简单,请耐心观看,总会搞懂的. 1. 定点数 对于一个无符号二进制小数,例如101.111,如果 ...

  6. IEEE754标准浮点格式

    两种基本浮点格式:单精度和双精度.IEEE单精度格式具有24位有效数字,并总共占用32 位.IEEE双精度格式具有53位有效数字精度,并总共占用64位 两种扩展浮点格式:单精度扩展和双精度扩展.此标准 ...

  7. IEEE754标准

    以下计算按规格化规定: S:符号位 M:分数值 E:指数偏移值 单精度浮点数(32bit): NUM_single = (-1)^S *  1.M   *   2^(E-127) 双精度浮点数(64b ...

  8. 【转载】JS Number类型数字位数及IEEE754标准

    JS的基础类型Number,遵循 IEEE 754 规范,采用双精度存储(double precision),占用 64 bit.如图 意义 1位用来表示符号位 11位用来表示指数 52位表示尾数 浮 ...

  9. JS Number类型数字位数及IEEE754标准

    JS的基础类型Number,遵循 IEEE 754 规范,采用双精度存储(double precision),占用 64 bit.如图 意义 1位用来表示符号位 11位用来表示指数 52位表示尾数 浮 ...

随机推荐

  1. P1025 数的划分 dfs dp

    题目描述 将整数nn分成kk份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7n=7,k=3k=3,下面三种分法被认为是相同的. 1,1,51,1,5;1,5,11,5,1;5,1, ...

  2. Practice| 流程控制

    若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),a为被除数,b为除数,即b|a("|"是整除符号),读作"b整除a"或& ...

  3. FileZilla FTP Client

    FileZilla Client是一个快速.实用.多功能和界面直观的免费的FTP客户端,虽然它是免费软件,可功能却一点也不含糊,比起那些共享软件来有过之而无不及,在新的版本中作者改进了手动下载的界面和 ...

  4. python查看对象用法

    python查看类用法: dir(object_name)

  5. checkbox、radio设置自定义样式

    老生常谈,做一个简单的记录.浏览器自带的checkbox和radio样式可能不符合项目要求,通常要做一些自定义样式设置,目前基本的解决思路都是将input[type=checkbox/radio]隐藏 ...

  6. vim编辑

    vim 重点在于光标的移动,模式的切换,删除,查找,替换,复制,黏贴,撤销命令的使用 vim的三种模式:命令模式(打开文件默认进入此模式)编辑模式(输入模式)末行模式(按:键进入,只能从命令模式下按键 ...

  7. linux6.8安装docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  8. Alpha(2/10)

    鐵鍋燉腯鱻 项目:小鱼记账 团队成员 项目燃尽图 冲刺情况描述 站立式会议照片 各成员情况 团队成员 学号 姓名 git地址 博客地址 031602240 许郁杨 (组长) https://githu ...

  9. LR特征维数特别大实时计算问题

    美团 https://tech.meituan.com/machinelearning-data-feature-process.html 维数灾难 待续...

  10. 关于sql server的一种简单用法——在上面写查询语句,即可在下面修改数据

    选择数据库中的表,右键单击-->编辑前200行,然后在显示的页面中选择带SQL标志的图标