Python 进程之间共享数据
最近遇到多进程共享数据的问题,到网上查了有几篇博客写的蛮好的,记录下来方便以后查看。
一、Python multiprocessing 跨进程对象共享
在mp库当中,跨进程对象共享有三种方式,第一种仅适用于原生机器类型,即python.ctypes当中的类型,这种在mp库的文档当中称为shared memory 方式,即通过共享内存共享对象;另外一种称之为server process , 即有一个服务器进程负责维护所有的对象,而其他进程连接到该进程,通过代理对象操作服务器进程当中的对象;最后一种在mp文档当中没有单独提出,但是在其 中多次提到,而且是mp库当中最重要的一种共享方式,称为inheritance ,即继承,对象在 父进程当中创建,然后在父进程是通过multiprocessing.Process创建子进程之后,子进程自动继承了父进程当中的对象,并且子进程对这 些对象的操作都是反映到了同一个对象。
这三者共享方式各有特色,在这里进行一些简单的比较。
首先是共享方式所应对的对象类型,看这个表:
共享方式 | 支持的类型 |
Shared memory | ctypes当中的类型,通过RawValue,RawArray等包装类提供 |
Inheritance | 系统内核对象,以及基于这些对象实现的对象。包括Pipe, Queue, JoinableQueue, 同步对象(Semaphore, Lock, RLock, Condition, Event等等) |
Server process | 所有对象,可能需要自己手工提供代理对象(Proxy) |
这个表总结了三种不同的共享方式所支持的类型,下面一个个展开讨论。
其中最单纯简单的就是shared memory这种方式,只有ctypes当中的数据类型可以通过这种方式共享。由于mp库本身缺少命名的机制,即在一个进程当中创建的对象,无法在另外一 个进程当中通过名字来引用,因此,这种共享方式依赖于继承,对象应该由父进程创建,然后由子进程引用。关于这种机制的例子,可以参见Python文档 当中的例子 Synchronization types like locks, conditions and queues,参考其中的test_sharedvalues函数。
然后是继承方式。首先关于继承方式需要有说明,继承本质上并不是一种对象共享的机制,对象共享只是其副作用。子进程从父进程继承来的对象并不一定是 共享的。继承本质上是父进程fork出的子进程自动继承父进程的内存状态和对象描述符。因此,实际上子进程复制 了一份 父进程的对象,只不过,当这个对象包装了一些系统内核对象的描述符的时候,拷贝这个对象(及其包装的描述符)实现了对象的共享。因此,在上面的表当中,只 有系统内核对象,和基于这些对象实现的对象,才能够通过继承来共享。通过继承共享的对象在linux平台上没有任何限制,但是在Windows上面由于没 有fork的实现,因此有一些额外的限制条件 ,因此,在Windows上面,继承方式是几乎无法用的。
最后就是Server Process这种方式。这种方式可以支持的类型比另外两种都多,因为其模型是这样的:
server process模型
在这个模型当中,有一个manager进程,负责管理实际的对象。真正的对象也是在manager进程的内存空间当中。所有需要访问该对象的进程都 需要先连接到该管理进程,然后获取到对象的一个代理对象(Proxy object),通常情况下,这个代理对象提供了实际对象的公共函 数 的代理,将函数参数进行pickle,然后通过连接传送到管理进程当中,管理进程将参数unpickle之后,转发给相应的实际对象 的函数,返回值(或者异常)同样经过管理进程pickle之后,通过连接传回到客户进程,再由proxy对象进行unpickle,返回给调用者或者抛出 异常。
很明显,这个模型是一个典型的RPC(远程过程调用)的模型。因为每个客户进程实际上都是在访问manager进程当中的对象,因此完全可以通过这 个实现对象共享。
manager和proxy之间的连接可以是基于socket的网络连接,也可以是unix pipe。如果是使用基于socket的连接方式,在使用proxy之前,需要调用manager对象的connect函数与远程的manager进程建 立连接。由于manager进程会打开端口接收该连接,因此必要的身份验证是需要的,否则任何人都可以连上manager弄乱你的共享对象。mp库通过 authkey的方式来进行身份验证。
在实现当中,manager进程通过multiprocessing.Manager类或者BaseManager的子类实现。 BaseManager提供了函数register注册一个函数来获取共享对象的proxy。这个函数会被客户进程调用,然后在manager进程当中执 行。这个函数可以返回一个共享的对象(对所有的调用返回同一个对象),或者可以为每一个调用创建一个新的对象,通过前者就可以实现多个进程共享一个对象。 关于这个的用法可以参考Python文档 当中的例子“Demonstration of how to create and use customized managers and proxies”。
典型的导出一个共享对象的代码是:
- ObjectType object_
- class ObjectManager(multiprocessing.managers.BaseManager): pass
- ObjectManager.register("object", lambda: object_)
注意上面介绍proxy对象的时候,我提到的“公共函数”四个字。每个proxy对象只会导出实际对象的公共函数。这里面有两个含义,一个是“公 共”,即所有非下划线开头的成员,另一个是“函数”,即所有callable的成员。这就带来一些限制,一是无法导出属性,二是无法导出一些公共的特殊函 数,例如__get__, __next__等等。对于这个mp库有一套处理,即自定义proxy对象。首先是BaseManager的register可以提供一个 proxy_type作为第三个参数,这个参数指定了哪些成员需要被导出。详细的使用方法可以参见文档当中的第一个例子。
另外manager还有一些细节的问题需要注意。由于Proxy对象不是线程安全的,因此如果需要在一个多线程程序当中使用proxy,mp库会为 每个线程创建一个proxy对象,而每个proxy对象都会对server process创建一个连接,而manager那边对于每个连接都创建一个单独的线程来为其服务。这样带来的问题就是,如果客户进程有很多线程,很容易会 导致manager进程的fd数目达到ulimit的限制,即使没有达到限制,也会因为manager进程当中有太多线程而严重影响manager的性 能。解决方案可以是一个进程内cache,只有一个单独的线程可以创建proxy对象访问共享对象,其余线程只能访问该进程当中的cache。
一旦manager因为达到ulimit限制或者其他异常,manager会直接退出,遗憾的是,这时候已经建立的proxy会试图重新连接 manager – 但是它已经不存在了。这个会导致客户进程hang在对proxy的函数调用上,这个时候,目前除了杀掉进程没有找到别的办法。
另外proxy使用socket的方式比较tricky,因此和内置的socket库有很多冲突,比如 socket.setdefaulttimeout(Python Issue 6056 )。在setdefaulttimeout调用了之后,进程当中所有通过socket模块建立的socket都是被设置为unblock模式的,但是mp 库并不知道这一点,而且它总是假设socket都是block模式的,于是,一旦调用了setdefaulttimeout,所有对于proxy的函数调 用都会抛出OSError,错误代码为11,错误原因是非常有误导性的“Resource temporarily unavailable”,实际上就是EAGAIN。这个错误可以通过我提供的一个patch 来补救(这个patch当中还包含其他的一些修复,所以请自行查看并修改该patch)。
由于以上的一些原因,server process模式作为一个对象的共享模式,能够提供最为灵活的共享方式,但是也有最多的问题。这个在使用过程当中就靠自己去衡量了。目前我们的系统对于 数据可靠性方面要求不高,丢失数据是可以接受的,但是也只用这种模式来维护统计值,不敢用来维护更多的东西。
二、Python多进程写入同一文件
最近用python的正则表达式处理了一些文本数据,需要把结果写到文件里面,但是由于文件比较大,所以运行起来花费的时间很长。但是打开任务管理器发现CPU只占用了25%,上网找了一下原因发现是由于一个叫GIL的存在,使得Python在同一时间只能运行一个线程,所以只占用了一个CPU,由于我的电脑是4核的,所以CPU利用率就是25%了。
既然多线程没有什么用处,那就可以使用多进程来处理,毕竟多进程是可以不受GIL影响的。Python提供了一个multiprocessing的多进程库,但是多进程也有一些问题,比如,如果进程都需要写入同一个文件,那么就会出现多个进程争用资源的问题,如果不解决,那就会使文件的内容顺序杂乱。这就需要涉及到锁了,但是加锁一般会造成程序的执行速度下降,而且如果进程在多处需要向文件输出,也不好把这些代码整个都锁起来,如果都锁起来,那跟单进程还有什么区别。有一个解决办法就是把向文件的输出都整合到一块去,在这一块集中加个锁,这样问题就不大了。不过还有一种更加优雅的解决方式:使用multiprocessing库的回调函数功能。
具体思路跟把文件输出集中在一起也差不多,就是把进程需要写入文件的内容作为返回值返回给惠和的回调函数,使用回调函数向文件中写入内容。这样做在windows下面还有一个好处,在windows环境下,python的多进程没有像linux环境下的多进程一样,linux环境下的multiprocessing库是基于fork函数,父进程fork了一个子进程之后会把自己的资源,比如文件句柄都传递给子进程。但是在windows环境下没有fork函数,所以如果你在父进程里打开了一个文件,在子进程中写入,会出现ValueError: I/O operation on closed file
这样的错误,而且在windows环境下最好加入if __name__ == '__main__'
这样的判断,以避免一些可能出现的RuntimeError或者死锁。
下面是代码:
from multiprocessing import Pool
import time def mycallback(x):
list1.append(x)
def sayHi(num): return num if __name__ == '__main__': pool = Pool(4)
list1 = []
for i in range(4):
pool.apply_async(sayHi, (i,), callback=mycallback)
# print(x)
pool.close()
pool.join() print(list1)
三、Python 进程之间共享数据(全局变量)
进程之间共享数据(数值型):
import multiprocessing def func(num):
num.value=10.78 #子进程改变数值的值,主进程跟着改变 if __name__=="__main__":
num=multiprocessing.Value("d",10.0) # d表示数值,主进程与子进程共享这个value。(主进程与子进程都是用的同一个value)
print(num.value) p=multiprocessing.Process(target=func,args=(num,))
p.start()
p.join() print(num.value)
进程之间共享数据(数组型):
进程之间共享数据(dict,list):
import multiprocessing def func(mydict,mylist):
mydict["index1"]="aaaaaa" #子进程改变dict,主进程跟着改变
mydict["index2"]="bbbbbb"
mylist.append(11) #子进程改变List,主进程跟着改变
mylist.append(22)
mylist.append(33) if __name__=="__main__":
with multiprocessing.Manager() as MG: #重命名
mydict=multiprocessing.Manager().dict() #主进程与子进程共享这个字典
mylist=multiprocessing.Manager().list(range(5)) #主进程与子进程共享这个List p=multiprocessing.Process(target=func,args=(mydict,mylist))
p.start()
p.join() print(mylist)
print(mydict)
四、参考链接:
1、http://blog.ftofficer.com/2009/12/python-multiprocessing-2-object-sharing-across-process/
2、http://blog.csdn.net/Q_AN1314/article/details/51923022
3、http://blog.csdn.net/houyanhua1/article/details/78244288
Python 进程之间共享数据的更多相关文章
- Python 进程之间共享数据(全局变量)
进程之间共享数据(数值型): import multiprocessing def func(num): num.value=10.78 #子进程改变数值的值,主进程跟着改变 if __name__= ...
- python 进程间共享数据 (二)
Python中进程间共享数据,除了基本的queue,pipe和value+array外,还提供了更高层次的封装.使用multiprocessing.Manager可以简单地使用这些高级接口. Mana ...
- VC++共享数据段实现进程之间共享数据
当我写了一个程序,我希望当这个程序同时运行两遍的时候,两个进程之间能共享一些全局变量,怎么办呢?很简单,使用VC\VC++的共享数据段.; #pragma data_seg()//恢复到正常段继续编程 ...
- python进程之间修改数据[Manager]与进程池[Pool]
#前面的队列Queue和管道Pipe都是仅仅能再进程之间传递数据,但是不能修改数据,今天我们学习的东西就可以在进程之间同时修改一份数据 #Mnager就可以实现 import multiprocess ...
- python 进程间共享数据 (一)
def worker(num, mystr, arr): num.value *= 2 mystr.value = "ok" for i in range(len(arr)): a ...
- python 进程间共享数据 (三)
Python的multiprocessing模块包装了底层的机制,提供了Queue.Pipes等多种方式来交换数据. 我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Q ...
- 进程间共享数据Manager
一.前言 进程间的通信Queue()和Pipe(),可以实现进程间的数据传递.但是要使python进程间共享数据,我们就要使用multiprocessing.Manager. Manager()返回的 ...
- C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 VC中进程与进程之间共享内存 .net环境下跨进程、高频率读写数据 使用C#开发Android应用之WebApp 分布式事务之消息补偿解决方案
C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing). ...
- Python multiprocessing.Manager介绍和实例(进程间共享数据)
Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装.使用multiprocessing.Manager可以简单地使用这些高级接口. Mana ...
随机推荐
- 【Dubbo 源码解析】08_Dubbo与Spring结合
Dubbo 与 Spring 结合 基于 dubbo.jar 内的 META-INF/spring.handlers 配置,Spring 在遇到 dubbo 名称空间时,会回调 DubboNamesp ...
- MySQL 千万 级数据量根据(索引)优化 查询 速度
一.索引的作用 索引通俗来讲就相当于书的目录,当我们根据条件查询的时候,没有索引,便需要全表扫描,数据量少还可以,一旦数据量超过百万甚至千万,一条查询sql执行往往需要几十秒甚至更多,5秒以上就已经让 ...
- RTX临界段,中断锁与任务锁
临界段 代码的临界段也称为临界区,一旦这部分代码开始执行,则不允许任何中断打断.为确保临界段代码的执行不被中断,在进入临界段之前须关中断,而临界段代码执行完毕后,要立即开中断. ...
- 机器人学 —— 机器人感知(Location)
终于完成了Robotic SLAM 所有的内容了.说实话,课程的内容比较一般,但是作业还是挺有挑战性的.最后一章的内容是 Location. Location 是 Mapping 的逆过程.在给定ma ...
- FTP连接服务器总报错的问题解决
在使用宝塔面板的时候,我在使用FTP的时候,总有这样的问题,FTP老是连接不上,花了两个小时左右的时间总算找到问题:端口问题. 首先一般的FTP端口是:21,22,我这里就改成:9527 了 然后回到 ...
- python将字符串类型改成日期类型
将字符串类型的'2019-03-14'改成date类型,如下: import datetime b = datetime.date(*map(int,'2019-03-14'.split('-'))) ...
- 《Linux.Shell编程从入门到精通》读书笔记
第一章 第一个Shell程序 以 #!解析器名称 开头,表示选择哪个解释器解释shell脚本 source命令 export命令 env命令 unset命令 第二章 shell编程基础 函数传递 标准 ...
- poj 2074
哎怎么说,感觉现在处理平面上点线的题已经比较熟练了. 这题就离散化然后搞个前缀和就没了. 准备开始进一步的自闭了. 下面是disguss的一些样例... 其实是我自己写错了个地方,本来能1A的. #i ...
- hibernate04--三种状态之间的转换
public class StudentTest { Session session=null; Transaction transaction=null; //在执行测试方法之前 先执行before ...
- 最新版的Chrome不能设置网页编码怎么解?
添加一个Google插件https://chrome.google.com/webstore/detail/set-character-encoding/bpojelgakakmcfmjfilgdlm ...