题目描述

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

输入

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

输出

  方案数。

样例输入

3 2

样例输出

16
 
 
  n<=9,显然是状压dp,定义状态f[i][j][k]表示枚举到第i行,状态为j,前i行总共放了k个国王的方案数。搜索出一行符合的所有状态,枚举当前行和上一行的状态,判断是否冲突,然后f[i][j][l]+=f[i-1][k][l-t[j]]转移即可。最后答案是∑f[n][j][m]
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long f[12][2000][200];
int cnt;
int n,m;
int s[2000];
int t[2000];
long long ans;
void dfs(int x,int y,int sum)
{
if(y>=n)
{
s[++cnt]=x;
t[cnt]=sum;
return ;
}
dfs(x,y+1,sum);
dfs(x|(1<<y),y+2,sum+1);
}
int main()
{
scanf("%d%d",&n,&m);
dfs(0,0,0);
for(int i=1;i<=cnt;i++)
{
f[1][i][t[i]]=1;
}
for(int i=2;i<=n;i++)
{
for(int j=1;j<=cnt;j++)
{
for(int k=1;k<=cnt;k++)
{
if(s[j]&s[k])
{
continue;
}
if((s[j]<<1)&s[k])
{
continue;
}
if(s[j]&(s[k]<<1))
{
continue;
}
for(int l=t[j];l<=m;l++)
{
f[i][j][l]+=f[i-1][k][l-t[j]];
}
}
}
}
for(int j=1;j<=cnt;j++)
{
ans+=f[n][j][m];
}
printf("%lld",ans);
}

BZOJ1087[SCOI2005]互不侵犯——状压DP的更多相关文章

  1. P1896 [SCOI2005]互不侵犯 状压dp

    正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...

  2. SCOI2005 互不侵犯 [状压dp]

    题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...

  3. [SCOI2005]互不侵犯 (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...

  4. luogu1896 [SCOI2005]互不侵犯 状压DP

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...

  5. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  7. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  8. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  9. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

随机推荐

  1. Subversion 1.8.9 ( SVN Client ) 安装最新版本的svn客户端

    For CentOS7 Users: [WandiscoSVN] name=Wandisco SVN Repo baseurl=http://opensource.wandisco.com/cento ...

  2. VS2013开发上位机并调用MSCcommm控件的方式

    此文章适合VC++串口通信入门 一.页面布局及添加控件 1, 安装好vs2010如图 2, 新建一个基于VC++的MFC项目comm 注意:点击ok,然后next,这时候要将application t ...

  3. Ajax获取 Json文件提取数据

    摘自 Ajax获取 Json文件提取数据 1. json文件内容(item.json) [ { "name":"张国立", "sex":&q ...

  4. LiveCharts文档-3开始-2基础

    原文:LiveCharts文档-3开始-2基础 LiveCharts文档-3开始-2基础 基本使用 LiveCharts设计的很容易使用,所有的东西都可以自动的实现更新和动画,库会在它觉得有必要更新的 ...

  5. Ionic App之国际化(1)单个参数的处理

    最近的app开发中需要考虑多语言国际化的问题,经查资料,目前大部分使用的是angular-translate.js这个组件,网站说明是这个:https://angular-translate.gith ...

  6. Kafka:Configured broker.id 2 doesn't match stored broker.id 0 in meta.properties.

    在安装Kafka集群的时候,碰到这个问题. 我们知道在搭建Kafka集群的时候,我们需要设置broker.id,以作为当前服务器在整个集群的唯一标志. 网上搜查资料是说,log.dirs目录下的met ...

  7. CF [2016-2017 ACM-ICPC CHINA-Final][GYM 101194 H] Great Cells

    很久以前做的一道思博题了,今天来补一补. 大致题意:在一个\(n*m\)的矩阵内填整数,数字在\([1,k]\)范围内.矩阵中某格的数为great number当且仅当与它同行同列的数字都严格比它小. ...

  8. dotnetcore/CAP

    CAP带你轻松玩转Asp.Net Core消息队列 CAP是什么? CAP是由我们园子里的杨晓东大神开发出来的一套分布式事务的决绝方案,是.Net Core Community中的第一个千星项目(目前 ...

  9. WordPress更新提示无法创建目录的解决方案

    上一篇我们说到无法连接FTP服务器,我们已经完美的解决了,然后...发现...还是无法更新,啥情况??? 提示为无法创建目录 原因是执行更新程序的是www用户, 解决方案如下: 需要把插件或主程序下载 ...

  10. Xshell连接到centos提示Could not connect to (port 22): Connection failed

    关于XShell连接虚拟机中的centos系统的问题,在连接的时候报错如下: 一开始以为是系统的问题,但是搞了很久,才发现是虚拟机这个软件本身的问题,的确坑啊!所以解决方法也很简单.在编辑菜单那里打开 ...