/_nodes/stats 字段意思   “”

    1 {  
2  "_nodes": {

3 "total": 1,
"successful": 1,
"failed": 0
},
"cluster_name": "ELKTEST",
"nodes": {
"lnlHC8yERCKXCuAc_2DPCQ": {
"timestamp": 1534242595995,
"name": "OPS01-ES01",
"transport_address": "10.9.125.148:9300",
"host": "10.9.125.148",
"ip": "10.9.125.148:9300",
"roles": [
"master",
"data",
"ingest"
],
"attributes": {
"ml.machine_memory": "",
"xpack.installed": "true",
"ml.max_open_jobs": "",
"ml.enabled": "true"
},
"indices": {
"docs": {
"count": 8111612, # 显示节点上有多少文档
"deleted": 16604 # 有多少已删除的文档还未从数据段中删除
},
"store": {
"size_in_bytes": 2959876263 # 显示该节点消耗了多少物理存储
},
"indexing": { #表示索引文档的次数,这个是通过一个计数器累加计数的。当文档被删除时,它不会减少。注意这个值永远是递增的,发生在内部索引数据的时候,包括那些更新操作
"index_total": 17703152,
"index_time_in_millis": 2801934,
"index_current": 0,
"index_failed": 0,
"delete_total": 46242,
"delete_time_in_millis": 2130,
"delete_current": 0,
"noop_update_total": 0,
"is_throttled": false,
"throttle_time_in_millis": 0 # 这个值高的时候,说明磁盘流量设置太低
},
"get": {
"total": 185179,
"time_in_millis": 22341,
"exists_total": 185178,
"exists_time_in_millis": 22337,
"missing_total": 1,
"missing_time_in_millis": 4,
"current": 0
},
"search": {
"open_contexts": 0, # 主动检索的次数,
"query_total": 495447, # 查询总数
"query_time_in_millis": 298344, # 节点启动到此查询消耗总时间, query_time_in_millis / query_total的比值可以作为你的查询效率的粗略指标。比值越大,每个查询用的时间越多,你就需要考虑调整或者优化。
"query_current": 0,
         #后面关于fetch的统计,是描述了查询的第二个过程(也就是query_the_fetch里的fetch)。fetch花的时间比query的越多,表示你的磁盘很慢,或者你要fetch的的文档太多。或者你的查询参数分页条件太大,(例如size等于1万
"fetch_total": 130194,
"fetch_time_in_millis": 51211,
"fetch_current": 0,
"scroll_total": 22,
"scroll_time_in_millis": 2196665,
"scroll_current": 0,
"suggest_total": 0,
"suggest_time_in_millis": 0,
"suggest_current": 0
},
"merges": { # 包含lucene段合并的信息,它会告诉你有多少段合并正在进行,参与的文档数,这些正在合并的段的总大小,以及花在merge上的总时间。
                如果你的集群写入比较多,这个merge的统计信息就很重要。merge操作会消耗大量的磁盘io和cpu资源。如果你的索引写入很多,你会看到大量的merge操作
"current": 0,
"current_docs": 0,
"current_size_in_bytes": 0,
"total": 68341,
"total_time_in_millis": 18490611,
"total_docs": 1016579669,
"total_size_in_bytes": 344453480895,
"total_stopped_time_in_millis": 0,
"total_throttled_time_in_millis": 1557,
"total_auto_throttle_in_bytes": 4345437596
},
"refresh": {
"total": 729643,
"total_time_in_millis": 7843558,
"listeners": 0
},
"flush": {
"total": 5161,
"periodic": 12,
"total_time_in_millis": 53116
},
"warmer": {
"current": 0,
"total": 718343,
"total_time_in_millis": 38069
},
"query_cache": {
"memory_size_in_bytes": 0,
"total_count": 0,
"hit_count": 0,
"miss_count": 0,
"cache_size": 0,
"cache_count": 0,
"evictions": 0
},
"fielddata": { #显示了fielddata使用的内存,fielddata用于聚合、排序等。这里也有一个淘汰数,不像filter_cache,这里的淘汰数很有用,它必须是0或者接近0,因为fielddata 不是缓存,任何淘汰的代价都是很大的,必须要避免的。如果你看到了淘汰,你必须重新评估你的内存情况,关于fielddata的限制,以及查询,或者三者全部。
"memory_size_in_bytes": 25312,
"evictions": 0
},
"completion": {
"size_in_bytes": 0
},
"segments": { 告诉你当前节点的lucene 段的个数,这可能是一个很重要的数字。大多数的索引应该在50到150个段左右,即便是几T大小的数十亿的文档。大量的段会带来合并的问题(例如:合并赶不上段的产生)。注意这个统计是对一个节点上所有的索引而言的
              其中内存的统计,可以告诉你Lucene的段自身需要多少内存。这里包括基础的数据结构,包括提交列表,词典,bloom过滤器等。段的数量多会增加承载这些数据结构的开销,这个内存的使用就是对这个开销的度量。
"count": 1171,
"memory_in_bytes": 17486054,
"terms_memory_in_bytes": 11679054,
"stored_fields_memory_in_bytes": 1628744,
"term_vectors_memory_in_bytes": 0,
"norms_memory_in_bytes": 1017280,
"points_memory_in_bytes": 745044,
"doc_values_memory_in_bytes": 2415932,
"index_writer_memory_in_bytes": 42232420,
"version_map_memory_in_bytes": 10812921,
"fixed_bit_set_memory_in_bytes": 148136,
"max_unsafe_auto_id_timestamp": 1534205010926,
"file_sizes": {}
},
"translog": {
"operations": 2422069,
"size_in_bytes": 2187759163,
"uncommitted_operations": 1092028,
"uncommitted_size_in_bytes": 1116860690,
"earliest_last_modified_age": 0
},
"request_cache": {
"memory_size_in_bytes": 524054,
"evictions": 0,
"hit_count": 157346,
"miss_count": 15441
},
"recovery": {
"current_as_source": 0,
"current_as_target": 0,
"throttle_time_in_millis": 0
}
},
"os": {
"timestamp": 1534242596057,
"cpu": {
"percent": 7,
"load_average": {
"1m": 0.02,
"5m": 0.05,
"15m": 0.12
}
},
"mem": {
"total_in_bytes": 8203104256,
"free_in_bytes": 147980288,
"used_in_bytes": 8055123968,
"free_percent": 2,
"used_percent": 98
},
"swap": {
"total_in_bytes": 536866816,
"free_in_bytes": 531492864,
"used_in_bytes": 5373952
},
"cgroup": {
"cpuacct": {
"control_group": "/",
"usage_nanos": 47396754950801
},
"cpu": {
"control_group": "/",
"cfs_period_micros": 100000,
"cfs_quota_micros": -1,
"stat": {
"number_of_elapsed_periods": 0,
"number_of_times_throttled": 0,
"time_throttled_nanos": 0
}
},
"memory": {
"control_group": "/",
"limit_in_bytes": "",
"usage_in_bytes": ""
}
}
},
"process": {
"timestamp": 1534242596058,
"open_file_descriptors": 1317,
"max_file_descriptors": 65536,
"cpu": {
"percent": 7,
"total_in_millis": 44676020
},
"mem": {
"total_virtual_in_bytes": 12394913792
}
},
"jvm": {
"timestamp": 1534242596059,
"uptime_in_millis": 463947765,
"mem": {
"heap_used_in_bytes": 1039819544,
"heap_used_percent": 19,
"heap_committed_in_bytes": 5333843968,
"heap_max_in_bytes": 5333843968,
"non_heap_used_in_bytes": 186193160,
"non_heap_committed_in_bytes": 198041600,
"pools": {
"young": {
"used_in_bytes": 179829784,
"max_in_bytes": 279183360,
"peak_used_in_bytes": 279183360,
"peak_max_in_bytes": 279183360
},
"survivor": {
"used_in_bytes": 10640952,
"max_in_bytes": 34865152,
"peak_used_in_bytes": 34865152,
"peak_max_in_bytes": 34865152
},
"old": {
"used_in_bytes": 849348808,
"max_in_bytes": 5019795456,
"peak_used_in_bytes": 3773164872,
"peak_max_in_bytes": 5019795456
}
}
},
"threads": {
"count": 118,
"peak_count": 122
},
"gc": {
"collectors": {
"young": {
"collection_count": 92158,
"collection_time_in_millis": 1728982
},
"old": {
"collection_count": 19,
"collection_time_in_millis": 2384
}
}
},
"buffer_pools": {
"direct": {
"count": 45,
"used_in_bytes": 135044601,
"total_capacity_in_bytes": 135044600
},
"mapped": {
"count": 2827,
"used_in_bytes": 2924840579,
"total_capacity_in_bytes": 2924840579
}
},
"classes": {
"current_loaded_count": 17649,
"total_loaded_count": 17806,
"total_unloaded_count": 157
}
},
"thread_pool": {
"analyze": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"fetch_shard_started": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"fetch_shard_store": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"flush": {
"threads": 2,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 2,
"completed": 10481
},
"force_merge": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"generic": {
"threads": 7,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 7,
"completed": 1252071
},
"get": {
"threads": 4,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 4,
"completed": 138926
},
"index": {
"threads": 4,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 4,
"completed": 46253
},
"listener": {
"threads": 2,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 2,
"completed": 16
},
"management": {
"threads": 5,
"queue": 0,
"active": 1,
"rejected": 0,
"largest": 5,
"completed": 802281
},
"ml_autodetect": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"ml_datafeed": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"ml_utility": {
"threads": 25,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 25,
"completed": 25
},
"refresh": {
"threads": 2,
"queue": 0,
"active": 1,
"rejected": 0,
"largest": 2,
"completed": 16523282
},
"rollup_indexing": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"search": {
"threads": 7,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 7,
"completed": 722194
},
"security-token-key": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"snapshot": {
"threads": 0,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 0,
"completed": 0
},
"warmer": {
"threads": 2,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 2,
"completed": 389633
},
"watcher": {
"threads": 20,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 20,
"completed": 46242
},
"write": {
"threads": 4,
"queue": 0,
"active": 0,
"rejected": 0,
"largest": 4,
"completed": 1162801
}
},
"fs": {
"timestamp": 1534242596059,
"total": {
"total_in_bytes": 321965260800,
"free_in_bytes": 316715397120,
"available_in_bytes": 316715397120
},
"least_usage_estimate": {
"path": "/data/elasticsearch/data/nodes/0",
"total_in_bytes": 321965260800,
"available_in_bytes": 316714684416,
"used_disk_percent": 1.63078972276503
},
"most_usage_estimate": {
"path": "/data/elasticsearch/data/nodes/0",
"total_in_bytes": 321965260800,
"available_in_bytes": 316714684416,
"used_disk_percent": 1.63078972276503
},
"data": [
{
"path": "/data/elasticsearch/data/nodes/0",
"mount": "/data (/dev/vdb)",
"type": "xfs",
"total_in_bytes": 321965260800,
"free_in_bytes": 316715397120,
"available_in_bytes": 316715397120
}
],
"io_stats": {
"devices": [
{
"device_name": "vdb",
"operations": 7009127,
"read_operations": 43871,
"write_operations": 6965256,
"read_kilobytes": 789805,
"write_kilobytes": 384479626
}
],
"total": {
"operations": 7009127,
"read_operations": 43871,
"write_operations": 6965256,
"read_kilobytes": 789805,
"write_kilobytes": 384479626
}
}
},
"transport": {
"server_open": 0,
"rx_count": 10,
"rx_size_in_bytes": 5428,
"tx_count": 10,
"tx_size_in_bytes": 5428
},
"http": {
"current_open": 23,
"total_opened": 2739
},
"breakers": {
"request": {
"limit_size_in_bytes": 3200306380,
"limit_size": "2.9gb",
"estimated_size_in_bytes": 0,
"estimated_size": "0b",
"overhead": 1,
"tripped": 0
},
"fielddata": {
"limit_size_in_bytes": 3200306380,
"limit_size": "2.9gb",
"estimated_size_in_bytes": 25312,
"estimated_size": "24.7kb",
"overhead": 1.03,
"tripped": 0
},
"in_flight_requests": {
"limit_size_in_bytes": 5333843968,
"limit_size": "4.9gb",
"estimated_size_in_bytes": 0,
"estimated_size": "0b",
"overhead": 1,
"tripped": 0
},
"accounting": {
"limit_size_in_bytes": 5333843968,
"limit_size": "4.9gb",
"estimated_size_in_bytes": 17486054,
"estimated_size": "16.6mb",
"overhead": 1,
"tripped": 0
},
"parent": {
"limit_size_in_bytes": 3733690777,
"limit_size": "3.4gb",
"estimated_size_in_bytes": 17511366,
"estimated_size": "16.7mb",
"overhead": 1,
"tripped": 0
}
},
"script": {
"compilations": 27,
"cache_evictions": 0
},
"discovery": {
"cluster_state_queue": {
"total": 0,
"pending": 0,
"committed": 0
},
"published_cluster_states": {
"full_states": 0,
"incompatible_diffs": 0,
"compatible_diffs": 0
}
},
"ingest": {
"total": {
"count": 0,
"time_in_millis": 0,
"current": 0,
"failed": 0
},
"pipelines": {
"xpack_monitoring_6": {
"count": 0,
"time_in_millis": 0,
"current": 0,
"failed": 0
},
"xpack_monitoring_2": {
"count": 0,
"time_in_millis": 0,
"current": 0,
"failed": 0
}
}
},
"adaptive_selection": {
"lnlHC8yERCKXCuAc_2DPCQ": {
"outgoing_searches": 0,
"avg_queue_size": 0,
"avg_service_time_ns": 61180,
"avg_response_time_ns": 326251,
"rank": "0.3"
}
}
}
}
}

elasticsearch 的查询 /_nodes/stats 各字段意思的更多相关文章

  1. Elasticsearch 复合查询——多字符串多字段查询

    前言 有时我们在搜索电影的时候,包含了多个条件,比如主演是周星驰,打分8分以上,上映时间是1990年~2001年的,那么Elasticsearch又该如何帮我们做查询呢?这里我们可以用 bool 查询 ...

  2. 分布式搜索引擎Elasticsearch的查询与过滤

    一.写入 先来一个简单的官方例子,插入的参数为-XPUT,插入一条记录. curl -XPUT 'http://localhost:9200/test/users/1' -d '{ "use ...

  3. 【转】elasticsearch的查询器query与过滤器filter的区别

    很多刚学elasticsearch的人对于查询方面很是苦恼,说实话es的查询语法真心不简单-  当然你如果入门之后,会发现elasticsearch的rest api设计是多么有意思. 说正题,ela ...

  4. 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(1)

    本文描述了一个系统,功能是评价和抽象地理围栏(Geo-fencing),以及监控和分析核心地理围栏中业务的表现. 技术栈:Spring-JQuery-百度地图WEB SDK 存储:Hive-Elast ...

  5. Elasticsearch: 权威指南 » 深入搜索 » 多字段搜索 » 多数字段 good

      跨字段实体搜索  » 多数字段编辑 全文搜索被称作是 召回率(Recall) 与 精确率(Precision) 的战场: 召回率 ——返回所有的相关文档:精确率 ——不返回无关文档.目的是在结果的 ...

  6. Elasticsearch Kibana查询语法

    Elasticsearch Kibana查询语法 2018年06月03日 23:52:30 wangpei1949 阅读数:3992   Elasticsearch Kibana Discover的搜 ...

  7. 002_分布式搜索引擎Elasticsearch的查询与过滤

    一.写入 先来一个简单的官方例子,插入的参数为-XPUT,插入一条记录. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 curl -XPUT 'http:/ ...

  8. elasticsearch简单查询

    elasticsearch简单查询示例: { "from": "0", //分页,从第一页开始 "size": "10" ...

  9. ElasticSearch高级查询

    ElasticSearch高级查询 https://www.imooc.com/video/15759/0 ElasticSearch查询 1,子条件查询:特定字段查询所指特定值 1.1query c ...

随机推荐

  1. Flask最强攻略 - 跟DragonFire学Flask - 第十四篇 Flask-SQLAlchemy

    前不久刚刚认识过了SQLAlchemy,点击这里复习一下 当 Flask 与 SQLAlchemy 发生火花会怎么样呢? Flask-SQLAlchemy就这么诞生了 首先要先安装一下Flask-SQ ...

  2. elasticsearch best_fields most_fields cross_fields从内在实现看区别——本质就是前两者是以field为中心,后者是词条为中心

    1.最佳字段(Best fields):: 假设我们有一个让用户搜索博客文章的网站(允许多字段搜索,最佳字段查询),就像这两份文档一样: PUT /my_index/my_type/1 { " ...

  3. Python sqlalchemy orm 多对多外键关联

    多对多外键关联 注:使用三张表进行对应关联 实现代码: # 创建3个表 配置外键关联 # 调用Column创建字段 加类型 from sqlalchemy import Table, Column, ...

  4. Linux 系统安全设置

    一.SElinux安全子系统策略. 临时修改 命令:setenforce 0 #临时关闭selinux. 命令:setenforce 1 #临时开启selinux 命令:getenforce      ...

  5. centos7 keepalived 配置高可用

    ! Configuration File for keepalived global_defs { notification_email { xaioqiang.he@xinboxinmo.com } ...

  6. 【七】jquery之属性attr、 removeAttr、prop[全选全不选及反选]

    全选全不选 界面: 代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  7. Openstack中查看虚拟机console log的几种方法

    Openstack中有时候虚拟机启动不正常,这时可以通过查看虚拟机console log能得到一些有用的信息. 有这些方法可以查看或获取虚拟机console log: 1)openstack控制台图形 ...

  8. ES6 4个方法

    var string = 'Yo' string.startsWith('Y')        -> true      startsWith()查找字符串是否是以某一个字段开始的 string ...

  9. 『TensorFlow』变量初始化

    变量初始化实质 initializer操作的流程是调用Variable节点组中的Assign节点为节点操作单元分配初始值 变量初始化方法 tf.Variable_initializer([variab ...

  10. 关于var time = +new Date;

    文章地址:https://www.cnblogs.com/Raoh/p/4212075.html