隐藏前缀提示符:PS1('>>')

不显示打印内容:;结尾

字符串:a=’hi’

屏幕输出:disp(sprint(‘2 decimals:%0.2f’,a))

生成集合(矩阵):V=1:0.1:2

V=1:6

生成矩阵:ones(2,3)%全1

zeros(2,3)%全0

rand(2,3)%随机0~1之间

eye(6)%单位矩阵

绘制直方图:hist(W)

矩阵维度:size(A)

size(A,1)%第一个维度,即行数

size(A,2)%第二个维度,即列数

length(A)%矩阵最大维度

查看工作空间中的所有变量:who%所有变量

whos%所有变量的详细信息

删除变量:clear A

索引矩阵元素:A(3,2)%

A(3:,:)%第三行所有元素

A(:,2)%第三列所有元素

矩阵操作:[A B]%组合矩阵,A,B左右放

[A;B]%组合矩阵,A,B上下放

     A*B%矩阵乘法

        A.*B%对应位置元素相乘

        A.^2%对A中的每个元素平方

       1./A%对A中的每个元素倒数

       A’%矩阵专职

       max(A)%每一列求最大值

      [value,index]=max(V)%行向量的最大值赋给value,对应索引给index

      magic(3)%魔方阵,所有的行和列对角线加起来都等于相同的值

      sum(a)%矩阵所有元素求和

    prod(a)%矩阵所有元素乘积

    floor(a)%矩阵所有元素向下四舍五入

    ceil(a)%矩阵所有元素向上四舍五入

绘图:

    %绘制正弦

    t=[0:0.01:0.98];

    y1=sin(2*pi*4*t);

    plot(t,y1)

    %绘制余弦

    y2=cos(2*pi*4*t)

    hold on%新图绘制在旧图上

    plot(t,y2)

    xlabel('time')%x轴标签
    ylabel('value')%y轴标签
    legend('sin',cos)%图例

    figure(1); plot(t, y1);%将显示第一张图,绘制了变量 t y1。

    figure(2); plot(t, y2);% 将显示第一张图,绘制了变量 t y2。

    subplot(1,2,1)%图像分为一个 1*2 的格子

可视化举证:

    imagesc(A)%彩色格图

    imagesc(magic(15)),colorbar,colormap gray%灰度分布图

基本控制语句:

    for语句:

    v=zeros(10,1)

    for i=1:10

      v(i)=2^i;

    end;

    v

    while语句:

    i=1;

    while i<=5,

      v(i)=100;

      i=i+1;

    end;

    break语句:

    i=1;

    while true,

      v(i)=999;

      i=i+1;

      if i==6,

        break;

      end;

    end;

吴恩达机器学习-octave笔记的更多相关文章

  1. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  2. Coursera 吴恩达 机器学习 学习笔记

    Week 1 机器学习笔记(一)基本概念与单变量线性回归 Week 2   机器学习笔记(二)多元线性回归 机器学习作业(一)线性回归——Matlab实现 机器学习作业(一)线性回归——Python( ...

  3. ML:吴恩达 机器学习 课程笔记(Week7~8)

    Support Vector Machines Unsupervised Learning Dimensionality Reduction

  4. ML:吴恩达 机器学习 课程笔记(Week5~6)

    Neural Networks: Learning Advice for Applying Machine Learning Machine Learning System Design

  5. ML:吴恩达 机器学习 课程笔记(Week9~10)

    Anomaly Detection Recommender Systems Large Scale Machine Learning

  6. ML:吴恩达 机器学习 课程笔记(Week3~4)

    Logistic Regression Regularization Neural Networks: Representation

  7. Coursera-吴恩达机器学习课程笔记-Week2

    参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week2 一. 多变量线性回归(Linear Regression with Multiple Variables) 多变量就时当一个exa ...

  8. Coursera-吴恩达机器学习课程笔记-Week1

    参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week 1 一. 引言 机器学习模型可分为监督学习Superviese learning(每个数据集给出了正确的值)和无监督学习Unsupe ...

  9. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

随机推荐

  1. zabbix 乱码问题

    一.乱码原因 查看cpu负载,中文乱码如下 这个问题是由于zabbix的web端没有中文字库,我们最需要把中文字库加上即可 二.解决zabbix乱码方法 2.1 上传字体文件到zabbix中 找到本地 ...

  2. Html 标签初知

    Html 标签初知 什么是Html 标签 超文本标记语言(外国语简称:HTML)标记标签通常被称为HTML标签,HTML标签是HTML语言中最基本的单位,HTML标签是HTML(标准通用标记语言下的一 ...

  3. Windows下用python来获取微信撤回消息

    转自:https://blog.csdn.net/sunzhibin1/article/details/83348304 娱乐(windows系统) 安装itchat itchat是一个开源的pyth ...

  4. win7下Oracle库impdp导入dmp

    第一步:创建备份文件存储目录 create or replace directory back_file as 'D:\app\yangxf\back_or_memery_file'; create ...

  5. RPM Yum 相关命令及参数

    RPM 命令 我们可以直接使用rpm命令,对软件包进行一些操作. 安装 rpm –ivh <package_name> rpm –Uvh <package_name> # 没有 ...

  6. 《Visual C# 从入门到精通》第三章使用判断语句——读书笔记

    第3章 使用判断语句 3.1 使用布尔操作符 布尔操作符是求值为true或false的操作符. C#提供了几个非常有用的布尔操作符,其中最简单的是NOT(求反)操作符,它用感叹号(!)表示.!操作符求 ...

  7. 微信端修改title

    function setTitle(t) { document.title = t; var i = document.createElement('iframe'); i.src = "i ...

  8. Ubuntu 停止 mydesktop 服务

    systemctl list-unit-files | grep mydesktop systemctl disable mydesktop.service

  9. 【转】 ISP-镜头阴影校正(LSC)

    转自:https://blog.csdn.net/xiaoyouck/article/details/77206505 介绍镜头阴影校正(Lens Shading Correction)是为了解决由于 ...

  10. koa和express对比

    不同: 1.启动方式不同 koa采用了new Koa()的方式,而express采用传统的函数形式 2.中间件形式二者不一样,这是由二者处理中间件的逻辑差异导致的,实际上这也是二者最根本的差别 3.k ...