一.做基础数据准备

这次使用fights得数据。

scala> val flights= sc.textFile("/user/hdfs/data/Flights/flights.csv")
flights: org.apache.spark.rdd.RDD[String] = /user/hdfs/data/Flights/flights.csv MapPartitionsRDD[3] at textFile at <console>:24

scala> val sampleFlights= sc.parallelize(flights.take(1000))
sampleFlights: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[4] at parallelize at <console>:26

scala> val header= sampleFlights.first
header: String = YEAR,MONTH,DAY,DAY_OF_WEEK,AIRLINE,FLIGHT_NUMBER,TAIL_NUMBER,ORIGIN_AIRPORT,DESTINATION_AIRPORT,SCHEDULED_DEPARTURE,DEPARTURE_TIME,DEPARTURE_DELAY,TAXI_OUT,WHEELS_OFF,SCHEDULED_TIME,ELAPSED_TIME,AIR_TIME,DISTANCE,WHEELS_ON,TAXI_IN,SCHEDULED_ARRIVAL,ARRIVAL_TIME,ARRIVAL_DELAY,DIVERTED,CANCELLED,CANCELLATION_REASON,AIR_SYSTEM_DELAY,SECURITY_DELAY,AIRLINE_DELAY,LATE_AIRCRAFT_DELAY,WEATHER_DELAY

scala> val filteredFlights= flights.filter( line=>{ line!= header } )
filteredFlights: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5] at filter at <console>:30

二.计算复合key 和 value

计算礼拜几,根据起飞时间计算是上午,下午,晚上,还是夜间飞机,把这两个作为复合key,根据这个来统计平均延误时间。

val timingMap = filteredFlights.map(flight =>{
val flightList=flight.split(",")
val dayOfWeek = flightList(3)
val time=if (flightList(10).length>0) {flightList(10).toInt}else 0
val delay=if (flightList(22).length>0) {flightList(22).toInt}else 0

var periodOfDay =0

if(time>=600 && time<1200){
periodOfDay=0
}else if (time>=1200 && time<1800){
periodOfDay=1
}else if (time>=1800 && time<2400){
periodOfDay=2
}else if (time>=0 && time<600){
periodOfDay=3
}
((dayOfWeek,periodOfDay),(delay,1))
})

timingMap.take(30).foreach(println)

//这里有一个重点,periodOfDay 不能定义为val,否则会有重复赋值得错误,如果有重复赋值得必要,使用var来定义。

//根据起飞时间分成1.2,3,4

//计算reduce 根据复合key ,计算延迟,如果在30分钟以内延迟到达,不计入延迟

val reduceMap=timingMap.reduceByKey((sum,current)=>{
var output =(0,0)
if (current._1>30){
output=((sum._1+current._1),(sum._2+current._2))
}else {output=(sum._1,sum._2)}
if (sum._1<0){
output=(0,0)
}
output
})

reduceMap.take(30).foreach(println)

//这里实际操作中把current._2写成1,因为实际上这个数据其实就是1,但是发现如果写成1,每次的结果都不一样,这里还是必须要使用current._2

三、排序并求平均延迟

val sortedDelays= reduceMap.sortByKey()

val delayByTime = sortedDelays.map(rec=>{
val dayOfWeek =rec._1._1
val time= rec._1._2
val chance =(rec._2._1+0.0)/rec._2._2
var periodOfDay=""
if (time==0){
periodOfDay="Morning"
}else if (time==1){
periodOfDay="Afternoon"
}else if (time==2){
periodOfDay="Evening"
}else if (time==3){
periodOfDay="Night"
}

dayOfWeek+", "+periodOfDay+", "+chance

})

delayByTime.take(30).foreach(println)

大数据入门到精通8-spark RDD 复合key 和复合value 的map reduce操作的更多相关文章

  1. 大数据入门到精通5--spark 的 RDD 的 reduce方法使用

    培训系列5--spark 的 RDD 的 reduce方法使用 1.spark-shell环境下准备数据 val collegesRdd= sc.textFile("/user/hdfs/C ...

  2. 大数据入门到精通4--spark的rdd的map使用方式

    学习了之前的rdd的filter以后,这次来讲spark的map方式 1.获得文件 val collegesRdd= sc.textFile("/user/hdfs/CollegeNavig ...

  3. 大数据入门到精通2--spark rdd 获得数据的三种方法

    通过hdfs或者spark用户登录操作系统,执行spark-shell spark-shell 也可以带参数,这样就覆盖了默认得参数 spark-shell --master yarn --num-e ...

  4. 大数据入门到精通3-SPARK RDD filter 以及 filter 函数

    一.如何处理RDD的filter 1. 把第一行的行头去掉 scala> val collegesRdd= sc.textFile("/user/hdfs/CollegeNavigat ...

  5. 大数据入门到精通11-spark dataframe 基础操作

    // dataframe is the topic 一.获得基础数据.先通过rdd的方式获得数据 val ny= sc.textFile("data/new_york/")val ...

  6. 大数据入门到精通10--spark rdd groupbykey的使用

    //groupbykey 一.准备数据val flights=sc.textFile("data/Flights/flights.csv")val sampleFlights=sc ...

  7. 大数据入门到精通6---spark rdd reduce by key 的使用方法

    1.前期数据准备(同之前的章节) val collegesRdd= sc.textFile("/user/hdfs/CollegeNavigator.csv")val header ...

  8. 大数据入门到精通18--sqoop 导入关系库到hdfs中和hive表中

    一,选择数据库,这里使用标准mysql sakila数据库 mysql -u root -D sakila -p 二.首先尝试把表中的数据导入到hdfs文件中,这样后续就可以使用spark来dataf ...

  9. 大数据入门到精通13--为后续和MySQL数据库准备

    We will be using the sakila database extensively inside the rest of the course and it would be great ...

随机推荐

  1. python 进程之间的数据共享

    from multiprocessing import Process,Manager import os def f(d,n): d[os.getpid()] = os.getppid()#对字典d ...

  2. Angular + Websocket

    Angular使用RxJS,它本质上是一个反应式扩展的javascript实现.这是一个使用可观察序列组成异步和基于事件的程序的库,非常适合使用WebSockets. 简而言之,RxJS允许我们从we ...

  3. cookie和session的关联关系

  4. git grep的一些用法

    https://www.kernel.org/pub/software/scm/git/docs/git-grep.html   把所有本地分支包含某个字符的行列出来,把含有master的列出来 gi ...

  5. 数论卷积公式and莫比乌斯反演

    数论卷积: 对于两个数论函数f(x),g(x) f(n)g(n)=∑ f(d)g(n/d) d|n 莫比乌斯函数: 设一个数n=(p1^k1)*(p2^k2)*(p3^k3)*..........*( ...

  6. PAT 甲级 1041 Be Unique (20 分)

    1041 Be Unique (20 分) Being unique is so important to people on Mars that even their lottery is desi ...

  7. lecune入门示例

    注意:本示例中的lucene版本需在jdk7以上使用. 一.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" ...

  8. @SuppressLint("HandlerLeak"),或Handler使用有警告;

    随手写个Handler,然后飘黄,看着挺难受(黄色警告的大概意思:Handler可能会内存泄漏,推荐你用静态内部类+实例化弱引用): This Handler class should be stat ...

  9. Oracle 学习笔记 (七)

    一.数据库的启动 启动数据库的三个阶段: nomount, mount,open mount 阶段:. 1.读参数文件 2.分配内存 3.启动后台进程 4.初始化部分v$视图 mount 阶段: 读参 ...

  10. Java中字段、属性、成员变量、局部变量、实例变量、静态变量、类变量、常量

    首先看个例子: package zm.demo; public class Demo { private int Id;//成员变量(字段).实例变量(表示该Id变量既属于成员变量又属于实例变量) p ...