https://github.com/tensorflow/tensorflow/issues/3212

NaNs usually indicate something wrong with your training. Perhaps your learning rate is too high, perhaps you have invalid data. Maybe you have an invalid operation like a divide by zero. Tensorflow refusing to write any NaNs is giving you a warning that something has gone wrong with your training.

If you  still suspect there is an underlying bug, you need to provide us a reproducible test case (as small as possible), plus information about what environment (please see the issue submission template).

https://stackoverflow.com/questions/33712178/tensorflow-nan-bug?newreg=c7e31a867765444280ba3ca50b657a07

Actually, it turned out to be something stupid. I'm posting this in case anyone else would run into a similar error.

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))

is actually a horrible way of computing the cross-entropy. In some samples, certain classes could be excluded with certainty after a while, resulting in y_conv=0 for that sample. That's normally not a problem since you're not interested in those, but in the way cross_entropy is written there, it yields 0*log(0) for that particular sample/class. Hence the NaN.

Replacing it with

cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)))

https://stackoverflow.com/questions/33922937/why-does-tensorflow-return-nan-nan-instead-of-probabilities-from-a-csv-file

Try throwing in a few of these.  Instead of this line:

tf_softmax = tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias)

Try:

tf_bias = tf.Print(tf_bias, [tf_bias], "Bias: ")
tf_weight = tf.Print(tf_weight, [tf_weight], "Weight: ")
tf_in = tf.Print(tf_in, [tf_in], "TF_in: ")
matmul_result = tf.matmul(tf_in, tf_weight)
matmul_result = tf.Print(matmul_result, [matmul_result], "Matmul: ")
tf_softmax = tf.nn.softmax(matmul_result + tf_bias)

to see what Tensorflow thinks the intermediate values are.  If the NaNs are showing up earlier in the pipeline, it should give you a better idea of where the problem lies.  Good luck!  If you get some data out of this, feel free to follow up and we'll see if we can get you further.

Updated to add:  Here's a stripped-down debugging version to try, where I got rid of the input functions and just generated some random data:

https://stackoverflow.com/questions/38810424/how-does-one-debug-nan-values-in-tensorflow

There are a couple of reasons WHY you can get a NaN-result, often it is because of too high a learning rate but plenty other reasons are possible like for example corrupt data in your input-queue or a log of 0 calculation.

Anyhow, debugging with a print as you describe cannot be done by a simple print (as this would result only in the printing of the tensor-information inside the graph and not print any actual values).

However, if you use tf.print as an op in bulding the graph (tf.print) then when the graph gets executed you will get the actual values printed (and it IS a good exercise to watch these values to debug and understand the behavior of your net).

However, you are using the print-statement not entirely in the correct manner. This is an op, so you need to pass it a tensor and request a result-tensor that you need to work with later on in the executing graph. Otherwise the op is not going to be executed and no printing occurs. Try this:

Z = tf.sqrt(Delta_tilde)
Z = tf.Print(Z,[Z], message="my Z-values:") # <-------- TF PRINT STATMENT
Z = Transform(Z) # potentially some transform, currently I have it to return Z for debugging (the identity)
Z = tf.pow(Z, 2.0)

tensorflow nan的更多相关文章

  1. 常用深度学习框——Caffe/ TensorFlow / Keras/ PyTorch/MXNet

    常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括Tenso ...

  2. 解决tensorflow在训练的时候权重是nan问题

    搭建普通的卷积CNN网络. nan表示的是无穷或者是非数值,比如说你在tensorflow中使用一个数除以0,那么得到的结果就是nan. 在一个matrix中,如果其中的值都为nan很有可能是因为采用 ...

  3. TensorFlow | ReluGrad input is not finite. Tensor had NaN values

    问题的出现 Question 这个问题是我基于TensorFlow使用CNN训练MNIST数据集的时候遇到的.关键的相关代码是以下这部分: cross_entropy = -tf.reduce_sum ...

  4. tensorflow训练中出现nan

    问题暂记: 之后看 https://blog.csdn.net/qq_23142123/article/details/80526931 https://www.zhihu.com/question/ ...

  5. tensorflow 训练网络loss突然出现nan的情况

    1.问题描述:开始训练一切都是那么的平静,很正常! 突然loss变为nan,瞬间懵逼! 2.在网上看了一些解答,可能是梯度爆炸,可能是有关于0的计算.然后我觉得可能是关于0的吧,然后进行了验证. 3. ...

  6. tensorflow 训练的时候loss=nan

    出现loss为nan 可能是使用了relu激活函数,导致的.因为在负半轴上输出都是0

  7. 深度学习中损失值(loss值)为nan(以tensorflow为例)

    我做的是一个识别验证码的深度学习模型,识别的图片如下 验证码图片识别4个数字,数字间是有顺序的,设立标签时设计了四个onehot向量链接起来,成了一个长度为40的向量,然后模型的输入也是40维向量用s ...

  8. tensorflow学习

    tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编 ...

  9. Tensorflow 实现稠密输入数据的逻辑回归二分类

    首先 实现一个尽可能少调用tf.nn模块儿的,自己手写相关的function     import tensorflow as tf import numpy as np import melt_da ...

随机推荐

  1. 报错:Exception in thread "main" com.typesafe.config.ConfigException$UnresolvedSubstitution

    报错现象: 报错原因: pom文件中的jar包太高,可以降低jar包的版本号. 报错解决: 我将2.11换成了2.10,即可解决. <dependency> <groupId> ...

  2. Lepus监控之安装部署

    PHP和Python都是跨平台的语言,所以理论上系统应该可以支持在不同的平台上运行.但是由于时间和精力以及资源有限,目前天兔系统只测试完善了Centos/RedHat系统的支持.我们目前提供的技术支持 ...

  3. C常量与控制语句

    在C语言中定义常量的两种方式 在C语言编程中定义常量有两种方法. const关键字 #define预处理器 1. const关键字 const关键字用于定义C语言编程中的常量. const float ...

  4. 204. jetcache:在Spring Boot中怎么玩?

      [视频&交流平台] àSpringBoot视频:http://t.cn/R3QepWG à SpringCloud视频:http://t.cn/R3QeRZc à Spring Boot源 ...

  5. list.remove的使用分析

    场景描述 在做需求中,有很多情况会出现 对一个list遍历并过滤掉其中特定的数据 这种场景 .但是按照平常的使用方式,发现报错了. public static void main(String[] a ...

  6. Oracle不能并行直接添加主键的方法:先建唯一索引后建主键

    环境:Oracle 11.2.0.3 需求:生产一张表由于前期设计不当,没有主键.现需要添加主键,数据量很大,想并行建立. 1.直接添加,提示ora-3001:未实施的功能;只能单线程建立主键 SQL ...

  7. C语音秋季学习总结

    我对下个学期的期望就是明确自己的目标,能在下学期中学习更多的知识

  8. Java语法 [HelloWorld]

    程序代码: public class lqx {// AAAAANBBBBCKJKSLJIOQL/*请手打哦!*/ public static void main (String[] args) { ...

  9. 在chrome console添加jQuery支持

    有时候想在chrome console使用jq,那么下面这段代码就可以完美解决问题了. var script = document.createElement('script');script.src ...

  10. svn的下载及安装

    什么是SVN: SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS. SVN的下载安装: 下载地址:https: ...