相对于「 基于词典的分析 」,「 基于机器学习 」的就不需要大量标注的词典,但是需要大量标记的数据,比如:

  还是下面这句话,如果它的标签是:

  服务质量 - 中 (共有三个级别,好、中、差)

  ╮(╯-╰)╭,其是机器学习,通过大量已经标签的数据训练出一个模型,

  然后你在输入一条评论,来判断标签级别

  宁馨的点评 国庆活动,用62开头的信用卡可以6.2元买一个印有银联卡标记的冰淇淋,

  有香草,巧克力和抹茶三种口味可选,我选的是香草口味,味道很浓郁。

  另外任意消费都可以10元买两个马卡龙,个头虽不是很大,但很好吃,不是很甜的那种,不会觉得腻。

  标签:服务质量 - 中

  

朴素贝叶斯

1、贝叶斯定理

假设对于某个数据集,随机变量C表示样本为C类的概率,F1表示测试样本某特征出现的概率,套用基本贝叶斯公式,则如下所示:

  上式表示对于某个样本,特征F1出现时,该样本被分为C类的条件概率。那么如何用上式来对测试样本分类呢?

  举例来说,有个测试样本,其特征F1出现了(F1=1),那么就计算P(C=0|F1=1)和P(C=1|F1=1)的概率值。前者大,则该样本被认为是0类;后者大,则分为1类。

  对该公示,有几个概念需要熟知:

  先验概率(Prior)。P(C)是C的先验概率,可以从已有的训练集中计算分为C类的样本占所有样本的比重得出。

  证据(Evidence)。即上式P(F1),表示对于某测试样本,特征F1出现的概率。同样可以从训练集中F1特征对应样本所占总样本的比例得出。

  似然(likelihood)。即上式P(F1|C),表示如果知道一个样本分为C类,那么他的特征为F1的概率是多少。

  对于多个特征而言,贝叶斯公式可以扩展如下:

  分子中存在一大串似然值。当特征很多的时候,这些似然值的计算是极其痛苦的。现在该怎么办?

  

2、朴素的概念

为了简化计算,朴素贝叶斯算法做了一假设:“朴素的认为各个特征相互独立”。这么一来,上式的分子就简化成了:

  P(C)P(F1|C)P(F2|C)...P(Fn|C)。

  这样简化过后,计算起来就方便多了。

  这个假设是认为各个特征之间是独立的,看上去确实是个很不科学的假设。因为很多情况下,各个特征之间是紧密联系的。然而在朴素贝叶斯的大量应用实践实际表明其工作的相当好。

  其次,由于朴素贝叶斯的工作原理是计算P(C=0|F1...Fn)和P(C=1|F1...Fn),并取最大值的那个作为其分类。而二者的分母是一模一样的。因此,我们又可以省略分母计算,从而进一步简化计算过程。

  另外,贝叶斯公式推导能够成立有个重要前期,就是各个证据(evidence)不能为0。也即对于任意特征Fx,P(Fx)不能为0。而显示某些特征未出现在测试集中的情况是可以发生的。因此实现上通常要做一些小的处理,例如把所有计数进行+1(加法平滑 aDDitive smoothing,又叫拉普拉斯平滑 Laplace smothing)。而如果通过增加一个大于 0 的可调参数 alpha 进行平滑,就叫Lidstone 平滑

  

基于朴素贝叶斯的情感分类

原始数据集,只抽了10条

  

读数据

读取excel文件,用的pandas库的DataFrame的数据类型

  

分词

对每个评论分词,分词的同时去除停用词,得到如下词表

  每个列表是与评论一一对应的

  

统计

这里统计什么呢?统计两种数据

  1. 评论级别的次数

  这里有三个级别分别对应

  c0 → 好 2

  c1 → 中 3

  c2 → 差 5

  2. 每个词在句子中出现的次数

  得到一个字典数据

  evalation [2, 5, 3]

  半价 [0, 5, 0]

  划算 [1, 1, 0]

  不错 [0, 2, 0]

  ·········

  不满 [0, 1, 0]

  重要 [0, 1, 0]

  清楚 [0, 1, 0]

  具体 [0, 1, 0]

  每个词(特征)后的 list坐标位:0,1,2分别对应好,中,差

  以上工作完成之后,就是把模型训练好了,只不过数据越多越准确

  

测试

比如输入一个句子

  世纪联华(百联西郊购物中心店)的点评 一个号称国际大都市,收银处的人服务态度差到极点。银联活动30-10,还不可以连单。

  得到结果

  c2-差

  相关代码的 GitHub 地址:

  http://t.cn/RKfemBM yszx11.cn    zhengshu5.com

详解基于朴素贝叶斯的情感分析及 Python 实现的更多相关文章

  1. Java实现基于朴素贝叶斯的情感词分析

    朴素贝叶斯(Naive Bayesian)是一种基于贝叶斯定理和特征条件独立假设的分类方法,它是基于概率论的一种有监督学习方法,被广泛应用于自然语言处理,并在机器学习领域中占据了非常重要的地位.在之前 ...

  2. 数据算法 --hadoop/spark数据处理技巧 --(13.朴素贝叶斯 14.情感分析)

    十三.朴素贝叶斯 朴素贝叶斯是一个线性分类器.处理数值数据时,最好使用聚类技术(eg:K均值)和k-近邻方法,不过对于名字.符号.电子邮件和文本的分类,则最好使用概率方法,朴素贝叶斯就可以.在某些情况 ...

  3. 【Coursera】基于朴素贝叶斯的中文多分类器

    一.算法说明 为了便于计算类条件概率\(P(x|c)\),朴素贝叶斯算法作了一个关键的假设:对已知类别,假设所有属性相互独立. 当使用训练完的特征向量对新样本进行测试时,由于概率是多个很小的相乘所得, ...

  4. 【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现

    文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示 ...

  5. 朴素贝叶斯原理、实例与Python实现

    初步理解一下:对于一组输入,根据这个输入,输出有多种可能性,需要计算每一种输出的可能性,以可能性最大的那个输出作为这个输入对应的输出. 那么,如何来解决这个问题呢? 贝叶斯给出了另一个思路.根据历史记 ...

  6. spark MLlib实现的基于朴素贝叶斯(NaiveBayes)的中文文本自动分类

    1.自动文本分类是对大量的非结构化的文字信息(文本文档.网页等)按照给定的分类体系,根据文字信息内容分到指定的类别中去,是一种有指导的学习过程. 分类过程采用基于统计的方法和向量空间模型可以对常见的文 ...

  7. R 基于朴素贝叶斯模型实现手机垃圾短信过滤

    # 读取数数据, 查看数据结构 df_raw <- read.csv("sms_spam.csv", stringsAsFactors=F) str(df_raw) leng ...

  8. 朴素贝叶斯算法下的情感分析——C#编程实现

    这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...

  9. C#编程实现朴素贝叶斯算法下的情感分析

    C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Lang ...

随机推荐

  1. SPOJ Qtree系列 5/7

    Qtree1 树剖裸题 注意把边权移到深度较深的点上,树剖跳的时候不要将LCA的答案统计上就行了 #include<stdio.h> #include<string.h> #d ...

  2. Android下WPS打开Excel2007版也有问题

    继上次解决微软office Android版Excel下载并打开Excel文件修改后(http://anforen.com/wp/2017/11/excel-android-mobile/),再上传出 ...

  3. JQuery如何实现双击事件时不触发单击事件

    单击和双击事件的执行顺序: 单击(click):mousedown,mouseout,click: 双击(dblclick):mousedown,mouseout,click , mousedown, ...

  4. Linux下DNS服务(Bind9)之Web管理利器-NamedManager部署说明

    NamedManager 是一个基于Web的DNS管理系统,可用来添加.调整和删除DNS的zones/records数据.它使用Bind作为底层DNS服务,提供一个现代Ajax的Web界面,支持 IP ...

  5. Oracle数据库设置为归档模式的操作方法

    Oracle归档模式非常非常重要!对于有些数据库刚装好后可能是非归档模式,这是很危险的!为了安全起见,一定要谨记:对于Oracle数据库,一定要设置为归档模式,尤其是生产库,只有这样才能实现数据库的有 ...

  6. 百度之星-1002-list应用

    用stl的list即可,注意...代码的简洁性(被debug伤痛)注意合并时可以手动pop,或者用splice进行合并,不能用merge!!!merge合并是自带排序!!! #include<b ...

  7. Visual Studio2013的安装过程及练习测试

    一.安装环境: 支持安装的操作系统版本:Windows XP,Windows7,Windows8,Windows10. CPU大小:Intel(R)Core(TM)i5-4210U CPU @1.7G ...

  8. 个人博客作业Week2(9月30日)

    一.是否需要有代码规范 1.这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 这些规范并不是一开始就有的,也不是由某个人规定的,代码规范是程序员们在不断地编程实践过 ...

  9. 猫咪记单词Beta版使用说明

    猫咪记单词Beta版使用说明 一.项目背景 英语四级考试.六级考试.托福.雅思等英语方面的考试是现在大学生必须面对的问题.同时因为学生对手机的使用越来越频繁,而且仅仅通过书本背诵单词又比较无聊坚持的时 ...

  10. github更新,发布地址,燃尽图,总结

    github地址:https://github.com/Lingchaoyang 网盘发布地址:http://pan.baidu.com/s/1qXgHiyC 燃尽图: 团队得分(100分制): 杨灵 ...