相对于「 基于词典的分析 」,「 基于机器学习 」的就不需要大量标注的词典,但是需要大量标记的数据,比如:

  还是下面这句话,如果它的标签是:

  服务质量 - 中 (共有三个级别,好、中、差)

  ╮(╯-╰)╭,其是机器学习,通过大量已经标签的数据训练出一个模型,

  然后你在输入一条评论,来判断标签级别

  宁馨的点评 国庆活动,用62开头的信用卡可以6.2元买一个印有银联卡标记的冰淇淋,

  有香草,巧克力和抹茶三种口味可选,我选的是香草口味,味道很浓郁。

  另外任意消费都可以10元买两个马卡龙,个头虽不是很大,但很好吃,不是很甜的那种,不会觉得腻。

  标签:服务质量 - 中

  

朴素贝叶斯

1、贝叶斯定理

假设对于某个数据集,随机变量C表示样本为C类的概率,F1表示测试样本某特征出现的概率,套用基本贝叶斯公式,则如下所示:

  上式表示对于某个样本,特征F1出现时,该样本被分为C类的条件概率。那么如何用上式来对测试样本分类呢?

  举例来说,有个测试样本,其特征F1出现了(F1=1),那么就计算P(C=0|F1=1)和P(C=1|F1=1)的概率值。前者大,则该样本被认为是0类;后者大,则分为1类。

  对该公示,有几个概念需要熟知:

  先验概率(Prior)。P(C)是C的先验概率,可以从已有的训练集中计算分为C类的样本占所有样本的比重得出。

  证据(Evidence)。即上式P(F1),表示对于某测试样本,特征F1出现的概率。同样可以从训练集中F1特征对应样本所占总样本的比例得出。

  似然(likelihood)。即上式P(F1|C),表示如果知道一个样本分为C类,那么他的特征为F1的概率是多少。

  对于多个特征而言,贝叶斯公式可以扩展如下:

  分子中存在一大串似然值。当特征很多的时候,这些似然值的计算是极其痛苦的。现在该怎么办?

  

2、朴素的概念

为了简化计算,朴素贝叶斯算法做了一假设:“朴素的认为各个特征相互独立”。这么一来,上式的分子就简化成了:

  P(C)P(F1|C)P(F2|C)...P(Fn|C)。

  这样简化过后,计算起来就方便多了。

  这个假设是认为各个特征之间是独立的,看上去确实是个很不科学的假设。因为很多情况下,各个特征之间是紧密联系的。然而在朴素贝叶斯的大量应用实践实际表明其工作的相当好。

  其次,由于朴素贝叶斯的工作原理是计算P(C=0|F1...Fn)和P(C=1|F1...Fn),并取最大值的那个作为其分类。而二者的分母是一模一样的。因此,我们又可以省略分母计算,从而进一步简化计算过程。

  另外,贝叶斯公式推导能够成立有个重要前期,就是各个证据(evidence)不能为0。也即对于任意特征Fx,P(Fx)不能为0。而显示某些特征未出现在测试集中的情况是可以发生的。因此实现上通常要做一些小的处理,例如把所有计数进行+1(加法平滑 aDDitive smoothing,又叫拉普拉斯平滑 Laplace smothing)。而如果通过增加一个大于 0 的可调参数 alpha 进行平滑,就叫Lidstone 平滑

  

基于朴素贝叶斯的情感分类

原始数据集,只抽了10条

  

读数据

读取excel文件,用的pandas库的DataFrame的数据类型

  

分词

对每个评论分词,分词的同时去除停用词,得到如下词表

  每个列表是与评论一一对应的

  

统计

这里统计什么呢?统计两种数据

  1. 评论级别的次数

  这里有三个级别分别对应

  c0 → 好 2

  c1 → 中 3

  c2 → 差 5

  2. 每个词在句子中出现的次数

  得到一个字典数据

  evalation [2, 5, 3]

  半价 [0, 5, 0]

  划算 [1, 1, 0]

  不错 [0, 2, 0]

  ·········

  不满 [0, 1, 0]

  重要 [0, 1, 0]

  清楚 [0, 1, 0]

  具体 [0, 1, 0]

  每个词(特征)后的 list坐标位:0,1,2分别对应好,中,差

  以上工作完成之后,就是把模型训练好了,只不过数据越多越准确

  

测试

比如输入一个句子

  世纪联华(百联西郊购物中心店)的点评 一个号称国际大都市,收银处的人服务态度差到极点。银联活动30-10,还不可以连单。

  得到结果

  c2-差

  相关代码的 GitHub 地址:

  http://t.cn/RKfemBM yszx11.cn    zhengshu5.com

详解基于朴素贝叶斯的情感分析及 Python 实现的更多相关文章

  1. Java实现基于朴素贝叶斯的情感词分析

    朴素贝叶斯(Naive Bayesian)是一种基于贝叶斯定理和特征条件独立假设的分类方法,它是基于概率论的一种有监督学习方法,被广泛应用于自然语言处理,并在机器学习领域中占据了非常重要的地位.在之前 ...

  2. 数据算法 --hadoop/spark数据处理技巧 --(13.朴素贝叶斯 14.情感分析)

    十三.朴素贝叶斯 朴素贝叶斯是一个线性分类器.处理数值数据时,最好使用聚类技术(eg:K均值)和k-近邻方法,不过对于名字.符号.电子邮件和文本的分类,则最好使用概率方法,朴素贝叶斯就可以.在某些情况 ...

  3. 【Coursera】基于朴素贝叶斯的中文多分类器

    一.算法说明 为了便于计算类条件概率\(P(x|c)\),朴素贝叶斯算法作了一个关键的假设:对已知类别,假设所有属性相互独立. 当使用训练完的特征向量对新样本进行测试时,由于概率是多个很小的相乘所得, ...

  4. 【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现

    文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示 ...

  5. 朴素贝叶斯原理、实例与Python实现

    初步理解一下:对于一组输入,根据这个输入,输出有多种可能性,需要计算每一种输出的可能性,以可能性最大的那个输出作为这个输入对应的输出. 那么,如何来解决这个问题呢? 贝叶斯给出了另一个思路.根据历史记 ...

  6. spark MLlib实现的基于朴素贝叶斯(NaiveBayes)的中文文本自动分类

    1.自动文本分类是对大量的非结构化的文字信息(文本文档.网页等)按照给定的分类体系,根据文字信息内容分到指定的类别中去,是一种有指导的学习过程. 分类过程采用基于统计的方法和向量空间模型可以对常见的文 ...

  7. R 基于朴素贝叶斯模型实现手机垃圾短信过滤

    # 读取数数据, 查看数据结构 df_raw <- read.csv("sms_spam.csv", stringsAsFactors=F) str(df_raw) leng ...

  8. 朴素贝叶斯算法下的情感分析——C#编程实现

    这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...

  9. C#编程实现朴素贝叶斯算法下的情感分析

    C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Lang ...

随机推荐

  1. 算法相关——Java排序算法之桶排序(一)

    (代码中对应一个数组的下标),将每个元素放入对应桶中,再将所有元素按顺序输出(代码中则按顺序将数组i下标输出arrary[i]次),即为{0,1,3,5,5,6,9}. 1.2  代码实现 /* *@ ...

  2. 线程中join()的用法

    Thread中,join()方法的作用是调用线程等待该线程完成后,才能继续用下运行. public static void main(String[] args) throws Interrupted ...

  3. SCRUM 12.23

    距离第二轮迭结束只有几天了. 我们全体组员现在的工作方向都在应用测试上. 明天的任务分配如下 成员 已完成任务 新任务 彭林江 落实API 自动爬虫测试 王卓 提升爬虫程序性能 正确性测试 郝倩 提升 ...

  4. 20145221 《Java程序设计》实验报告四:Android开发基础

    20145221 <Java程序设计>实验报告四:Android开发基础 实验要求 基于Android Studio开发简单的Android应用并部署测试; 了解Android组件.布局管 ...

  5. C++高质量编程笔记

    /* * 函数介绍: * 输入参数: * 输出参数: * 返回值 : */ void Function(float x, float y, float z) { - } if (-) { - whil ...

  6. Jquery获取和修改img的src值的方法

    转自:http://www.jb51.net/article/46861.htm 获取(代码): $("#imgId")[0].src; 修改(代码): $("#imgI ...

  7. 软件工程(GZSD2015) 第三次作业提交进度

    第三次作业题目请查看这里:软件工程(GZSD2015)第三次作业 开始进入第三次作业提交进度记录中,童鞋们,虚位以待哈... 2015年4月19号 徐镇.尚清丽,C语言 2015年4月21号 毛涛.徐 ...

  8. PAT 1014 福尔摩斯的约会

    https://pintia.cn/problem-sets/994805260223102976/problems/994805308755394560 大侦探福尔摩斯接到一张奇怪的字条:“我们约会 ...

  9. Selenium IDE 宏 试用 一例

    本质是宏(Macro)理念 Marco概念的广泛应用: 1.Office的Excel里的任何操作的 可以都可以用VBA编程记录下宏,然后把记录的宏,可以回放.当然也可以生成代码,比如给Excel设置单 ...

  10. MSTSC 3389 端口修改

    1. 启动注册表编辑器. 2. 找到并单击以下注册表子项: 3. HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Terminal Server ...