https://www.luogu.org/problemnew/show/P4868

题目大意

单点修改,查询前缀前缀和。

分析

遇到了单点修改,前缀和,很明显是要树状数组维护解决问题。
请看以下我的数列的转换

\[s1+s2+s3+ \cdots +sn\]

\[a1+a1+a2+a1+a2+a3+ \cdots +an\]

\[a1*n+a2*(n-1)+a3*(n-2)+...an*1\]

\[(a1+a2+a3+...+an) \times N - (a2+a3^2+a4^3+...+an^{n-1})\]

ac代码

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 100005
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1;
    char ch = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') fl = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    x *= fl;
}
struct bittree {
    #define lowbit(x) (x&(-x))
    ll tr[N];
    int n;
    void add(int k, ll val) {
        for (int i = k; i <= n; i += lowbit(i))
            tr[i] += val;
    }
    ll query(int x) {
        ll res = 0;
        for (int i = x; i; i -= lowbit(i))
            res += tr[i];
        return res;
    }
}tr1, tr2;
int n, m;
ll a[N];
int main() {
    read(n); read(m);
    tr1.n = tr2.n = n;
    for (int i = 1; i <= n; i ++) {
        read(a[i]);
        tr1.add(i, a[i]);
        tr2.add(i, a[i] * (i - 1));
    }
    while (m --) {
        char opt[10];
        scanf("%s", opt);
        ll x, y;
        if (opt[0] == 'Q') {
            read(x);
            printf("%lld\n", (ll)(tr1.query(x) * x) - 1ll * tr2.query(x));
        }
        else {
            read(x); read(y);
            tr1.add(x, y - a[x]);
            tr2.add(x, (y - a[x]) * (x - 1));
            a[x] = y;
        }
    }
    return 0;
}

[luogu4868]Preprefix sum的更多相关文章

  1. [bzoj3155]Preprefix sum(树状数组)

    3155: Preprefix sum Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 1183  Solved: 546[Submit][Status] ...

  2. BZOJ 3155: Preprefix sum( 线段树 )

    刷刷水题... 前缀和的前缀和...显然树状数组可以写...然而我不会, 只能写线段树了 把改变成加, 然后线段树维护前缀和, 某点p加, 会影响前缀和pre(x)(p≤x≤n), 对[p, n]这段 ...

  3. Preprefix sum BZOJ 3155 树状数组

    题目描述 前缀和(prefix sum)Si=∑k=1iaiS_i=\sum_{k=1}^i a_iSi​=∑k=1i​ai​. 前前缀和(preprefix sum) 则把SiS_iSi​作为原序列 ...

  4. 3155: Preprefix sum

    3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...

  5. 差分+树状数组【p4868】Preprefix sum

    Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...

  6. 树状数组【bzoj3155】: Preprefix sum

    3155: Preprefix sum 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3155 把给出的a_i当成查分数组d_i做就可以了 ...

  7. 2021.08.09 P4868 Preprefix sum(树状数组)

    2021.08.09 P4868 Preprefix sum(树状数组) P4868 Preprefix sum - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 前缀和(pr ...

  8. BZOJ3155: Preprefix sum

    题解: 写过树状数组搞区间修改和区间求和的就可以秒出吧... 代码: #include<cstdio> #include<cstdlib> #include<cmath& ...

  9. BZOJ 3155: Preprefix sum

    大意:给一个数组,先求出SUM[I],然后动态的求出1-I的SUM[I]的和, 这题得化公式: 树状数组维护两个和:SUM(A[I])(1<=I<=X); SUM(A[I]*(N-I+1) ...

随机推荐

  1. WPF 实现主从的datagrid以及操作rowdetailtemplate 的方法

    原文:WPF 实现主从的datagrid以及操作rowdetailtemplate 的方法 WPF 实现主从的datagrid以及操作rowdetailtemplate 的方法        最近在做 ...

  2. TopShelf 自动配置Service测试

    在开发中经常会遇到后台定时处理数据和任务的情况,处理这些事情大概有以下几种方案: 1.使用数据库的job功能.优点是在数据库中可以完成的就在数据库中完成,配置等基础设施数据库都提供,简单快捷.缺点是如 ...

  3. DefWindowProc是一个会产生消息的函数

    先看一道题目: 当用户点击右上角关闭按钮的时候,请给下列Windows做出的响应排个序:A:发送 WM_QUIT 消息     B:发送 WM_CLOSE 消息     C:发送 WM_DESTROY ...

  4. JQuery如何实现双击事件时不触发单击事件

    单击和双击事件的执行顺序: 单击(click):mousedown,mouseout,click: 双击(dblclick):mousedown,mouseout,click , mousedown, ...

  5. Java Web应用开发中的一些概念

    最近在学习Java Web,发现Java Web的概念很多,而且各个概念之间的关系也挺复杂,本篇博客把这些关系总结于此,主要参考的博客附在文章末尾. 概念 服务器 服务器,硬件角度上说就是一台高性能的 ...

  6. React.js 入门与实战课程思维导图

    原文发表于我的技术博客 我在慕课网的「React.js 入门与实战之开发适配PC端及移动端新闻头条平台」课程已经上线了,在这里分享了课程中的思维导图,供大家参考. 原文发表于我的技术博客 此导图为课程 ...

  7. OSGI的WEB开发环境搭建

    第一步,搭建OSGI环境: 打开eclipse,点击run->run configration..,配置如下,点击run. 运行结果如下图所示:说明OSGI环境搭建完毕. 第二步:搭建基于OSG ...

  8. python基础学习笔记(十二)

    模块 前面有简单介绍如何使用import从外部模块获取函数并且为自己的程序所用: >>> import math >>> math.sin(0) #sin为正弦函数 ...

  9. python基础学习笔记(一)

    安装与运行交互式解释器 在绝大多数linux和 UNIX系统安装中(包括Mac OS X),Python的解释器就已经存在了.我们可以在提示符下输入python命令进行验证(作者环境ubuntu) f ...

  10. C学习随笔

    1)要经常复习,一些基础的知识点,学过的.讲过的实例,应多看一下,学习并掌握编程的语法.思路.实验中可看出,不少同学对以前知识没有掌握,对讲过的实例没有理解2)要经常实践,纸上得来终觉浅,绝知此事要躬 ...