【AGC005F】Many Easy Problems
Description
题目链接
对于每个\(k\),统计任选\(k\)个点作为关键点的“最小生成树”的大小之和
Solution
正向想法是枚举或者计算大小为\(x\)、叶子数目为\(y\)的子树有多少种,然后贡献答案。这种方法参数多、难统计,可以感受到无法适应\(1e5\)的数据,舍弃
正难则反,自顶向下正向统计难,就考虑自底向上贡献统计。那么这里的自底向上,就应该是对于每一个点,统计其贡献到每个\(ans\)的次数,并累加。
既然要输出k=1...m的答案,可以猜到贡献是一个卷积加速的形式
所以先考虑每个点对某一个k的答案的贡献
任选k个点之后,一个点对答案有1的贡献,当且仅当选择的点不全在以其为根时的某棵子树中
这个很好统计,不全在某棵子树中这个条件很难考虑,不如直接用总数减去不合法的方案,毕竟所有元素用一个组合数就可以搞定\({n \choose k}-\sum_v {size_v\choose k}\)
则
\]
前一部分可以直接算,但后一部分看起来不是一个数组的卷积
遇到这种情况,我们可以用权值作为下标先做一个统计数组\(a[size_v]++\),因为统计时使用的数据与这个\(size_v\)具体是哪一个点的子树大小关系不大,而只和子树大小这个数值有关。因此不以每个点作为视角考虑(具体是谁不重要),而以整棵树为视角考虑,那么\(ans_k\)就会变成
\]
减法卷积算出每个\(ans_k\)的负部分即可
Code
#include <cstdio>
using namespace std;
namespace IO{
const int S=10000000;
char buf[S];
int pos;
void load(){
fread(buf,1,S,stdin);
pos=0;
}
char getChar(){
return buf[pos++];
}
int getInt(){
int x=0,f=1;
char c=getChar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getChar();}
while('0'<=c&&c<='9'){x=x*10+c-'0';c=getChar();}
return x*f;
}
}
using IO::getInt;
const int N=200005;
const int MOD=924844033,G=5;
int n;
int h[N],tot;
struct Edge{
int v,next;
}e[N*2];
int size[N],sum[N];
int fact[N],iact[N];
inline void swap(int &x,int &y){
x^=y^=x^=y;
}
void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
n=getInt();
int u,v;
for(int i=1;i<n;i++){
u=getInt(); v=getInt();
addEdge(u,v);
}
}
void dfs(int u,int fa){
size[u]=1;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
dfs(v,u);
size[u]+=size[v];
sum[size[v]]++;
}
sum[n-size[u]]++;
}
int fmi(int x,int y){
int res=1;
for(;y;x=1ll*x*x%MOD,y>>=1)
if(y&1)
res=1ll*res*x%MOD;
return res;
}
void init(){
fact[0]=1;
for(int i=1;i<=n;i++)
fact[i]=1ll*fact[i-1]*i%MOD;
iact[0]=iact[1]=1;
if(n>1){
iact[n]=fmi(fact[n],MOD-2);
for(int i=n-1;i>=2;i--)
iact[i]=1ll*iact[i+1]*(i+1)%MOD;
}
}
inline int C(int n,int m){
return m>n?0:1ll*fact[n]*iact[m]%MOD*iact[n-m]%MOD;
}
namespace NTT{/*{{{*/
const int S=N*4,B=19;
int n,invn,bit;
int rev[S],W[S][2];
void build(){
int iG=fmi(G,MOD-2);
for(int i=0;i<=B;i++){
W[1<<i][0]=fmi(G,(MOD-1)/(1<<i));
W[1<<i][1]=fmi(iG,(MOD-1)/(1<<i));
}
}
void init(int _n){
for(n=1,bit=0;n<_n;n<<=1,bit++);
invn=fmi(n,MOD-2);
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void ntt(int *a,int f){
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
int w_n,w,u,v;
for(int i=2;i<=n;i<<=1){
w_n=W[i][f];
for(int j=0;j<n;j+=i){
w=1;
for(int k=0;k<(i>>1);k++){
u=a[j+k];
v=1ll*w*a[j+(i>>1)+k]%MOD;
a[j+k]=(u+v)%MOD;
a[j+(i>>1)+k]=(u-v)%MOD;
w=1ll*w*w_n%MOD;
}
}
}
if(f)
for(int i=0;i<n;i++) a[i]=1ll*a[i]*invn%MOD;
}
}/*}}}*/
void solve(){
static int a[NTT::S],b[NTT::S];
for(int i=0;i<n;i++){
a[i]=1ll*sum[i]*fact[i]%MOD;
b[i]=iact[n-1-i];
}
NTT::init(n+n-1);
NTT::ntt(a,0);
NTT::ntt(b,0);
for(int i=0;i<NTT::n;i++) a[i]=1ll*a[i]*b[i]%MOD;
NTT::ntt(a,1);
// now a[n],a[n+1],... represent k=1,2,3,...
int ans;
for(int k=1;k<=n;k++){
ans=(1ll*n*C(n,k)%MOD-1ll*iact[k]*a[n-1+k]%MOD)%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
}
int main(){
IO::load();
NTT::build();
readData();
dfs(1,0);
init();
solve();
return 0;
}
【AGC005F】Many Easy Problems的更多相关文章
- 【AGC005F】Many Easy Problems (NTT)
Description 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...
- 【AGC005F】Many Easy Problems FFT 容斥原理
题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...
- 【BZOJ3450】Tyvj1952 Easy 期望DP
[BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...
- 【HDU4565】So Easy!
[HDU4565]So Easy! 题面 要你求 \[ \lceil (a+\sqrt b)^n \rceil \% m \] 其中\(0<a,m<2^{15},(a-1)^2<b& ...
- 【Hello 2018 D】Too Easy Problems
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 可以考虑把所有的题目按照ai排序. 然后顺序考虑最后做出来的题目个数和第i道题目的ai一样. 则1..i-1这些题目就没有用了. 值 ...
- 【AGC005F】简单的问题 Many Easy Problems
Description 链接 Solution 对于每个\(k\),统计任选\(k\)个点作为关键点的"最小生成树"的大小之和 正向想法是枚举或者计算大小为\(x\).叶子数目为\ ...
- 【AGC 005F】Many Easy Problems
Description One day, Takahashi was given the following problem from Aoki: You are given a tree with ...
- 【AGC005 F】Many Easy Problems
神他吗一天考一道码农题两道 FFT(其实还是我推式子一窍不通) 题意 给你一棵 \(n\) 个点的树,再给你一个常数 \(k\). 设 \(S\) 为树上某些点的集合,定义 \(f(S)\) 为最小的 ...
- 【bzoj3450】Tyvj1952 Easy
题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有 ...
随机推荐
- VMware Ubuntu蓝屏问题解决
解决方法: 问题分析启动 Ubuntu 可以进入登录界面,说明系统是可以运行起来的.没有发生大块的核心数据损坏,linux 系统一般都可以修复,一定要淡定.于是开始放狗(google)搜索.“VMwa ...
- springcloud 笔记
官方教程 http://projects.spring.io/spring-cloud/ guide https://github.com/spring-guides 伪官方教程 https://sp ...
- ansible环境部署及常用模块总结 - 运维笔记
一. Ansible 介绍Ansible是一个配置管理系统configuration management system, python 语言是运维人员必须会的语言, ansible 是一个基于py ...
- MySQL两种存储引擎: MyISAM和InnoDB 简单总结
MyISAM是MySQL的默认数据库引擎(5.5版之前),由早期的ISAM(Indexed Sequential Access Method:有索引的顺序访问方法)所改良.虽然性能极佳,但却有一个缺点 ...
- java — 静态绑定和动态绑定
绑定:一个方法的调用与方法所在的类关联起来.java中的绑定分为静态绑定和动态绑定,又被称作前期绑定和后期绑定. 静态绑定:(final.static.private)在程序执行前已经被绑定,也就是说 ...
- slot 插槽的作用域用法(摘自vue.js 官网)
有的时候你希望提供的组件带有一个可从子组件获取数据的可复用的插槽.例如一个简单的 <todo-list> 组件的模板可能包含了如下代码: <ul> <li v-for=& ...
- ngnix使用超时响应时间配置避坑一例
ngnix的超时响应时间配置得比tomcat的spring mvc响应时间还小,悲剧就发生了,生产环境还不易发现. 就好比定制固定木柜没考虑进门的尺寸,横竖斜都进不去,太悲剧了.哈哈哈,以此为鉴!~
- Win10 1803 Spring Creators update Consumer edition的版本记录
安装时可选择的版本列表 安装完之后的版本: 3. 时间线更新 4. Focus assistant
- python数据相关性分析 (计算相关系数)
#-*- coding: utf-8 -*- #餐饮销量数据相关性分析 计算相关系数 from __future__ import print_function import pandas as pd ...
- centos网络yum源的安装
CentOS使用EPEL YUM源EPEL (Extra Packages for Enterprise Linux)是基于Fedora的一个项目,为“红帽系”的操作系统提供额外的软件包,适用于RHE ...